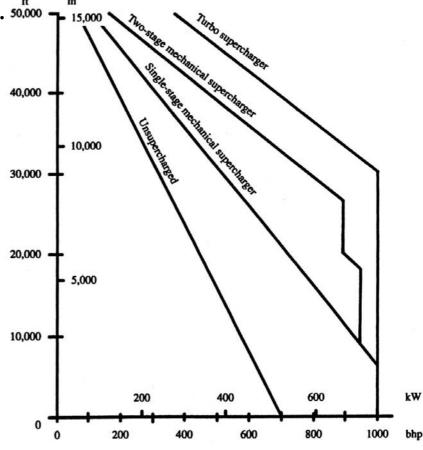
Propulsão

- Para a determinação do desempenho da aeronave é necessário conhecer o desempenho do sistema propulsivo instalado;
- Para a propulsão a hélice é necessário escolher o hélice adequado ao motor e aos regimes de voo e determinar o desempenho do sistema motor/hélice.

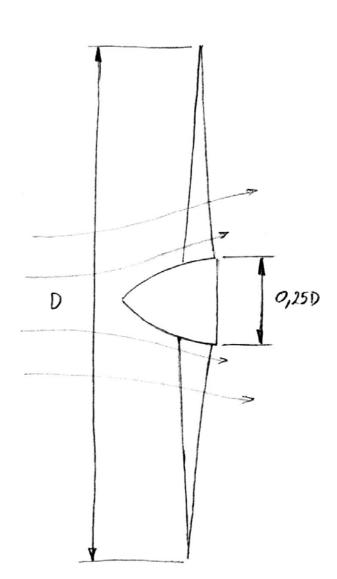
Modelos de motor

Tipo de motor		Potência/tracção	Consumo específico	Obs.
A.1, , , .	• 1		0 0	T 7 1
Alternativo	aspirado	$P = P_0(\rho/\rho_0 - (1-\rho/\rho_0)/7,55)$	$C = C_0$	usar $V = 1$
				quando $V = 0$
	turbo	$P = P_0$	$C = C^0$	usar $V = 1$
		$P = P_0(\rho/\rho_L - (1-\rho/\rho_L)/7,55)$		quando $V = 0$
Turbohélice		$P = P_0(\rho/\rho_0)$	$C = C^0$	usar $V = 1$
				quando $V = 0$
Turbofan c/ λ		$T = (0, 1/M)T_0(\rho/\rho_0)$	$C = C_0 (T/T_0)^{0.25}$	usar $M = 0,1$
elevado				quando $M < 0,1$
Turbofan c/ λ	s/ pós-queimador	$T = T_0(\rho/\rho_0)$	$C = C_0 (T/T_0)^{0.25}$	só para M < 0,9
baixo e turbojacto		, ·		
	c/ pós-queimador	$T = T_0(\rho/\rho_0)(1+0.7M)$	$C = C_0 (T/T_0)^{0.25}$	


T é temperatura

Desempenho do motor alternativo

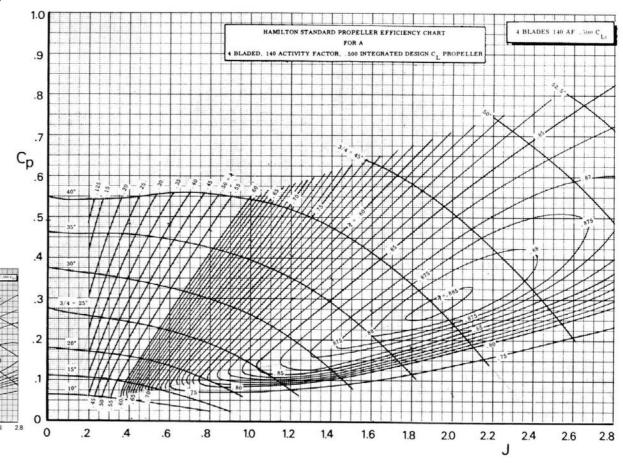
 A potência é proporcional ao caudal de ar que entra no motor;


motor;

• A potência varia com a altitude. So,000 7 15,000 7 15,000 7 15,000

Escolha do hélice (1)

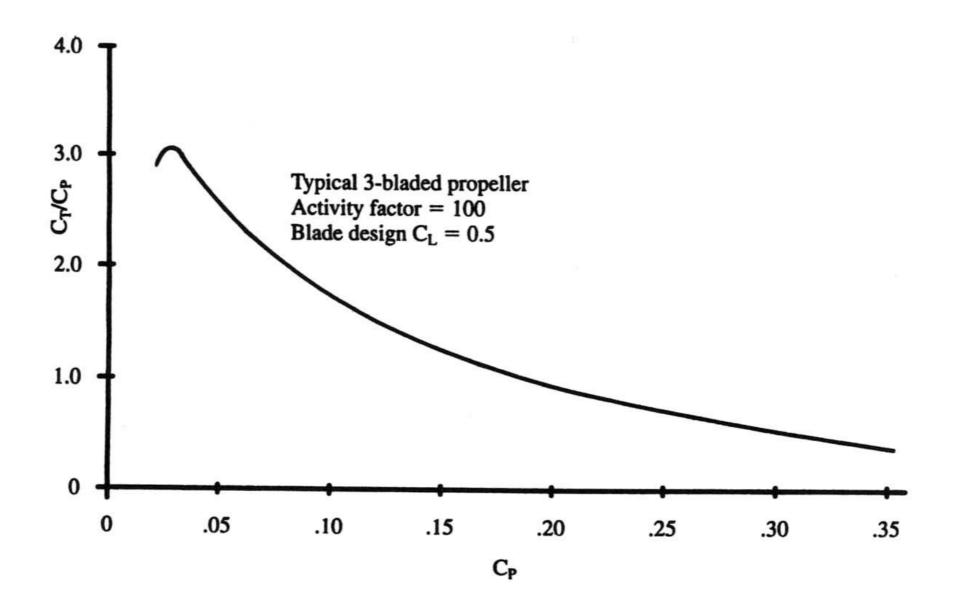
- Dimensionamento do hélice:
 - Inicialmente:
 - $2 \text{ pás} D = 0.556(HP)^{0.25} [m]$
 - 3 pás D = $0.457(HP)^{0.25}$ [m]
 - 3 pás (agrícola) D = $0.518(HP)^{0.25}$ [m]
 - Verificação da velocidade de ponta da pá:
 - $V'_{ponta} = (V^2_{ponta} + V^2)^{0.5} e M'_{ponta} = V'_{ponta}/a$
 - $V_{\text{ponta}} = N\pi DG/60$
 - V velocidade da aeronave [m/s]
 - N rotação do motor [rpm]
 - G redução (G = 60n/N)
 - N rotação do hélice [rot/s]
 - $D = 60/(N\pi G)(V^{2}_{ponta}-V^{2})^{0.5} [m]$

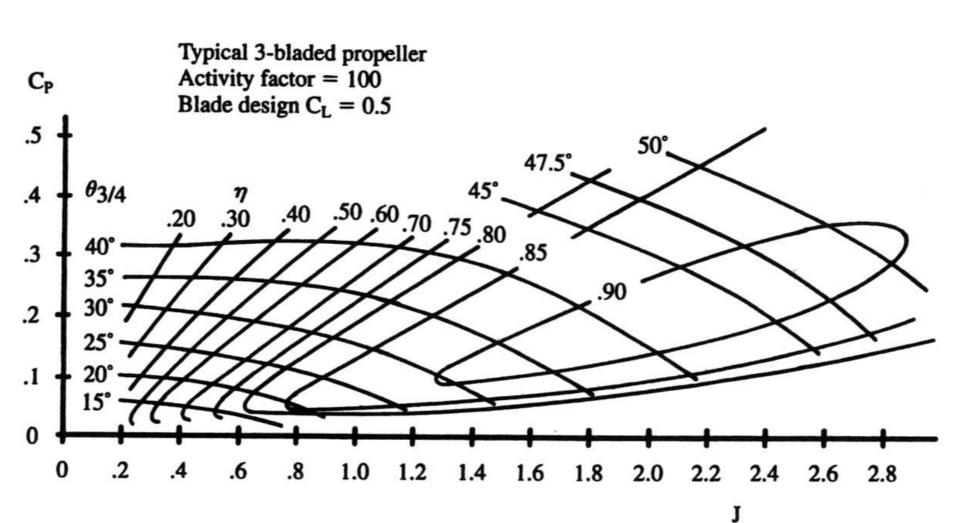

Escolha do hélice (2)

- Dimensionamento do hélice:
 - Escolhe-se o diâmetro menor dos dois anteriores;
 - As velocidades de ponta máximas são:

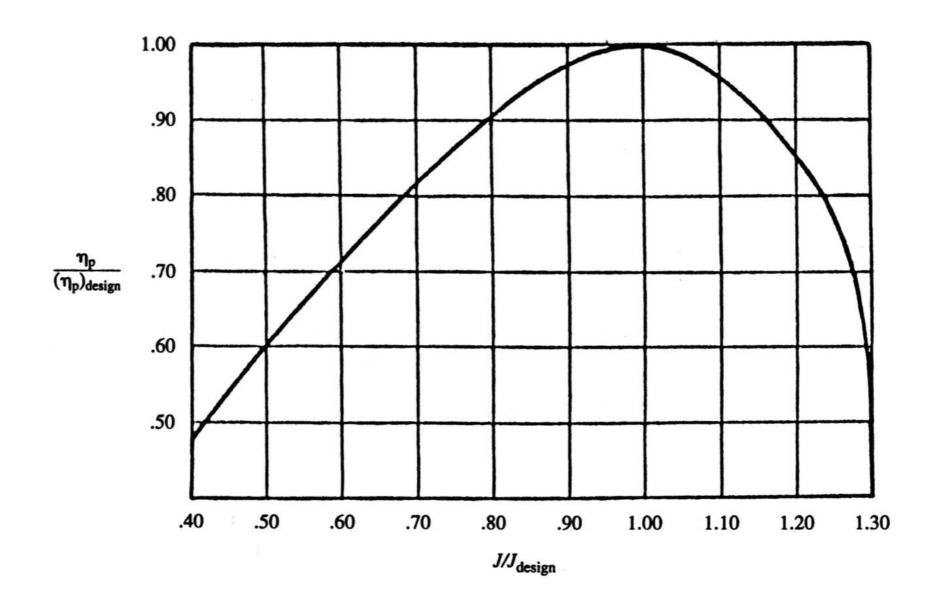
Tipo de hélice	Mach ponta máximo	Velocidade ponta máxima	
	M'ponta	V'ponta [m/s]	
Metal/carbono	0,85	290	
Madeira (perfil espesso)	0,76	260	
Baixo ruído	0,63	213	

Desempenho do hélice (1)


- $C_P = P/(\rho n^3 D^5)$
- $C_T = T/(\rho n^2 D^4)$
- $\eta_P = TV/P$
- J = V/(nD)


Desempenho do hélice (2)

• Eficiência propulsiva do hélice:


Desempenho do hélice (3)

Desempenho do hélice (4)

Desempenho do hélice (5)

Desempenho do hélice (6)

- Determinação do desempenho do hélice não instalado:
 - Hélice de velocidade constante: usam-se as duas primeiras figuras para qualquer C_p e J;
 - Hélice de passo fixo: usa-se a segunda com o C_P e J de projecto para determinar θ e depois usa-se a terceira figura para outros J.
- Tendo como referência um hélice tripá o desempenho de hélices de 2 ou 4 pás pode ser estimado da seguinte forma:
 - Para hélices de madeira, devido ao perfil mais espesso, a eficiência da tabela é multiplicada por 0,9.

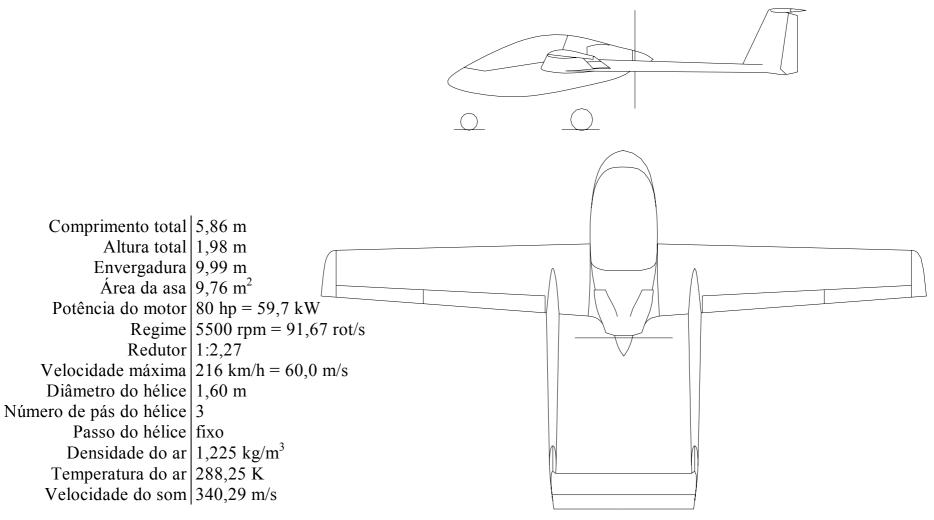
Desempenho	2 pás	3 pás	4 pás	
Eficiência propulsiva	1,03η _P	η_P	0,97η _Ρ	
Tracção	0,95T	T	1,05T	

Desempenho instalado (1)

• Correcção de bloqueio:

- A nacela do motor atrás do hélice faz com que o escoamento desacelere antes de chegar ao hélice;
- $J_{cor} = J(1-0.329S_C/D^2);$
- S_C área da secção máxima da nacela/fuselagem;
- − D − diâmetro do hélice;
- Usar J_{cor} nos gráficos de desempenho do hélice.

Desempenho instalado (2)


- Correcção de compressibilidade:
 - A tracção é reduzida a grandes velocidade e regime devido ao efeito de compressibilidade;
 - $\eta_{Pcor} = \eta_P (M_{ponta} 0.89)[0.16/(0.48 3t/c)] \text{ para } M_{ponta} > 0.89;$
 - $M_{ponta} = [V^2 + (\pi nD)^2]^{0.5}/a;$
 - a velocidade do som;
 - − t/c espessura relativa do perfil do hélice.

Desempenho instalado (3)

- Correcção de fricção:
 - As partes do avião dentro da esteira do hélice vão estar sujeitas a maior velocidade e mais turbulência aumentando a resistência de fricção;
 - Pode usar-se uma eficiência efectiva;
 - $\eta_{Pef} = \eta_{P}[1-1.558/D^{2}(\rho/\rho_{0})\Sigma(C_{F}S_{wet})_{esteira}];$
 - − C_F − coeficiente de fricção;
 - S_{wet} área molhada;
 - Para hélices empurra deve considerar-se uma perda de eficiência de 2% a 5% devido à esteira da fuselagem, asa e empenagens.

Exemplo (1)

Características do avião:

Exemplo (2)

- Verificação do Mach na ponta:
 - Para $M_{ponta} = 0.8$:
 - D = $[(M_{ponta}a)^2 V^2]^{0.5}/(\pi n);$
 - D = $[(0.8 \times 340.29)^2 60.0^2]^{0.5}/(40.38\pi) = 2.09 \text{ m};$
 - com n = 91,67/2,27 = 40,38 rot/s;
 - $M_{ponta} = [V^2 + (\pi nD)^2]^{0.5}/a;$
 - $M_{\text{ponta}} = [60,0^2 + (40,38x1,6\pi)^2]^{0.5}/340,29 = 0.62$.

Exemplo (3)

- Determinação do passo do hélice:
 - J = V/(nD) = 60,0/(40,38x1,6) = 0,929;
 - $C_p = P/(\rho n^3 D^5) = 59700/(1,225x40,38^2x1,6^5) = 0,071$
 - Do gráfico:
 - $\theta = 22,5^{\circ}$;
 - $\eta_{\rm p} = 0.875$;
 - Como o hélice é empurra não é preciso fazer correcção no J para obter J_{cor};
 - Como o hélice é empurra não é preciso corrigir η_P para obter η_{Pef} , mas é necessário aplicar o factor de 0,95-0,98 devido à esteira da fuselagem.

Exemplo (4)

- Condições de projecto do hélice:
 - $\quad \eta_{Pdesign} = 0,95x0,875 = 0,831;$
 - $J_{\text{design}} = 0.929;$
- Determinação da curva de tracção:
 - Usando a curva típica:

V [m/s]	J	J/J _{design}	$\eta_P/\eta_{Pdesign}$	η_P	T [N]
5	0,077	0,083	0,092	0,076	913
25	0,387	0,417	0,500	0,416	992
40	0,619	0,667	0,777	0,646	964
50	0,774	0,833	0,930	0,773	923
60	0,929	1,000	1,000	0,831	827
70	1,083	1,167	0,896	0,745	635

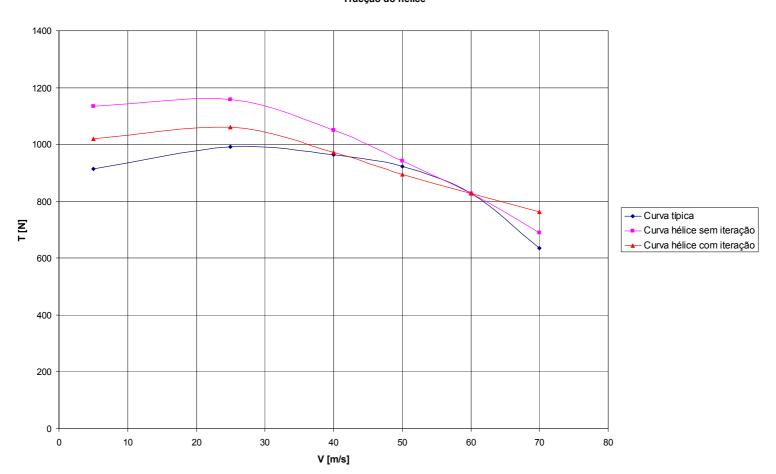
Exemplo (5)

- Determinação da curva de tracção:
 - Usando a curva do hélice sem iteração:

	V	J	C_{P}	C_{P}	$\eta_{ ext{P}}$	T
	[m/s]		(fórmula)	(gráfico)	•	[N]
1 .	<i>F</i>	0.077	0.071	0.127	0.005	1124
reduzir	5	0,077	0,071	0,137	0,095	1134
regime e	25	0,387	0,071	0,124	0,485	1157
potência	40	0,619	0,071	0,106	0,703	1049
	50	0,774	0,071	0,090	0,789	941
	60	0,929	0,071	0,071	0,831	827
aumentar	70	1,083	0,071	0,048	0,808	689
regime e		p/ regime	p/ regime		0,95η _P do	
potência		máximo	máximo		gráfico	
		p/ potência	é necessário ajustar o			
		máxima	regime para	igualar os C _P		

Exemplo (6)


- Determinação da curva de tracção:
 - Usando a curva do hélice com iteração:


V	J	C_{P}	C_P	η_P	T	n	P
[m/s]		(fórmula)	(gráfico)	•	[N]	[rot/s]	[W]
5	0,108	0,137	0,137	0,119	1019	29,04	42924
25	0,497	0,116	0,116	0,570	1060	31,46	46506
40	0,722	0,096	0,096	0,760	973	34,65	51223
50	0,837	0,082	0,082	0,809	894	37,35	55223
60	0,929	0,071	0,071	0,831	827	40,38	59700
70	1,002	0,060	0,060	0,827	762	43,65	64536

0,95η_P do gráfico

Exemplo (7)

• Curvas de tracção:

