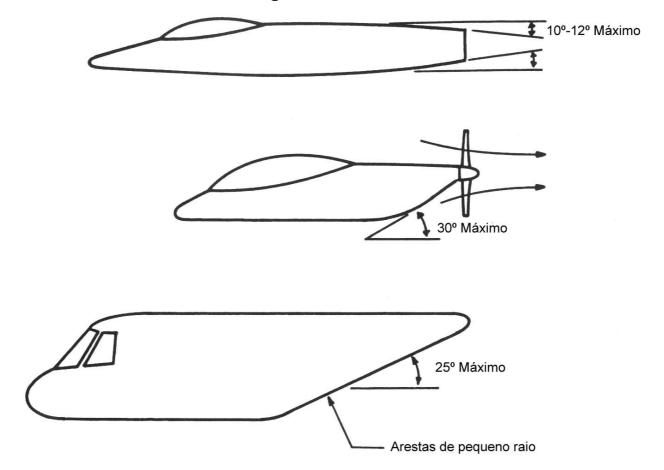
## Considerações acerca da Configuração

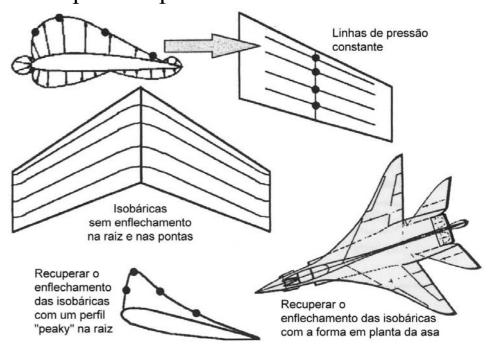

- Existem considerações importantes que o projectista deve ter em conta quando define o arranjo inicial da aeronave;
- Estas considerações incluem aspectos aerodinâmicos, estruturais, de segurança, de produção, de manutenção, de detecção, de vulnerabilidade, etc.;
- Durante a definição da configuração é necessário considerar o impacto das escolhas de uma forma qualitativa.

### Considerações aerodinâmicas (1)

- Uso de linhas contínuas e suaves na definição dos contornos:
  - Prevenir a separação do escoamento;
  - Evitar arestas que produzam separação ou resistência parasita.
- Providenciar uma continuidade na junção asa-fuselagem ou empenagens-fuselagem:
  - Prevenir perda de sustentação;
  - Reduzir a destruição da forma elíptica da sustentação;
  - Reduzir o aumento da resistência de interferência.
- Minimização da área molhada:
  - Diminuir a resistência parasita;
  - Fazer fuselagens curtas.

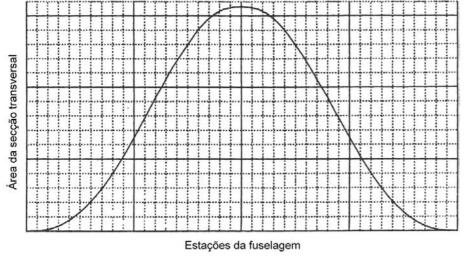
## Considerações aerodinâmicas (2)

- Uso de ângulos de fuga pequenos:
  - Reduzir a resistência de pressão.




## Considerações aerodinâmicas (3)

- Forçar o enflechamento das linhas isobáricas:
  - Minimizar escoamento supersónico;
  - Prolongar o bordo de ataque para a frente na raiz;
  - Recuar o bordo de ataque na ponta;


Usar um perfil na raiz com pico de pressão próximo ao bordo de

ataque.



## Considerações aerodinâmicas (4)

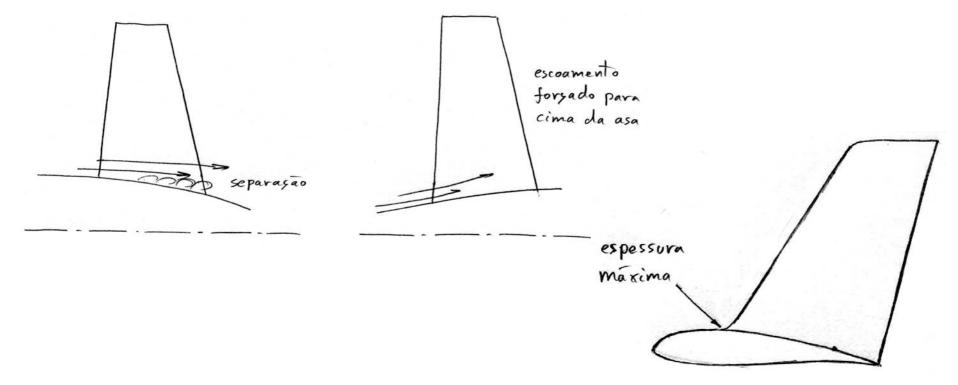
- Regra de área supersónica:
  - Minimizar a resistência de onda supersónica;
  - Distribuição de volume que resulta no mínimo de resistência de onda para M=1.



Regra de área supersónica (M=1.0)

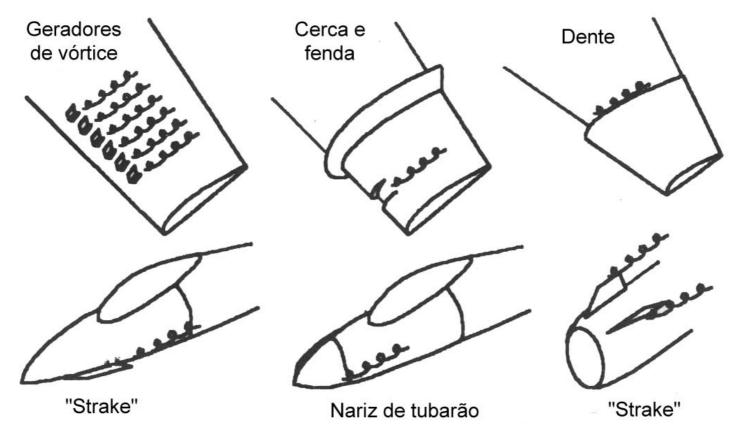
Progressão de área suave
Secção transversal máxima mais pequena

Fuselagem


Fuselagem

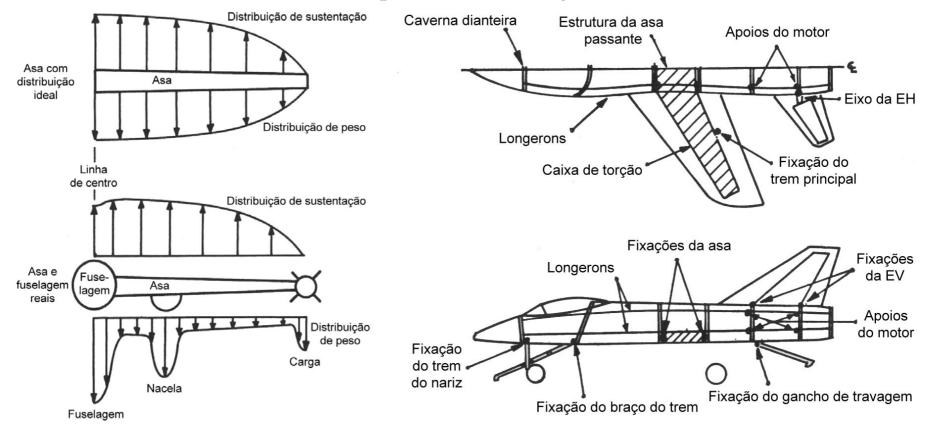
Fuselagem

## Considerações aerodinâmicas (5)


### • Regra subsónica:

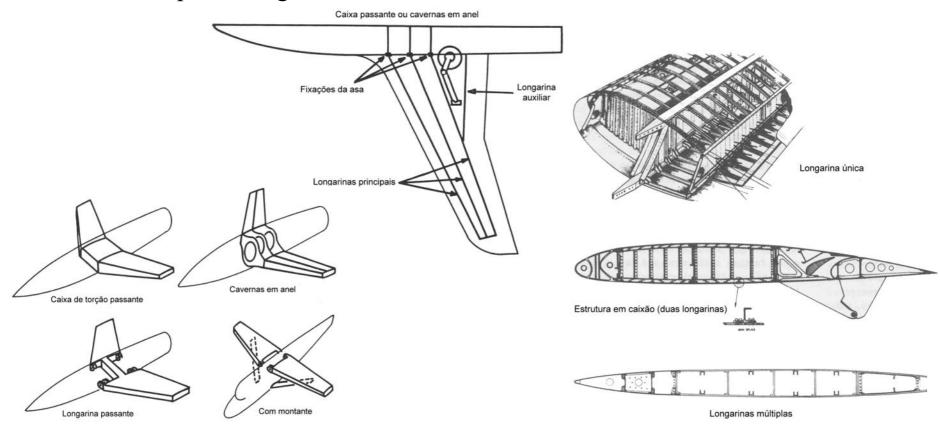
- Colocação da asa em zonas de secção crescente da fuselagem;
- Colocação de "winglets" ou empenagens a partir da espessura máxima da asa.




### Considerações aerodinâmicas (6)

- Correcções para colmatar separação do escoamento:
  - Energizar o escoamento;
  - Orientar o escoamento.




## Considerações estruturais (1)

- Transmissão de cargas:
  - Minimizar os esforços colocando pesos a opor a sustentação;
  - Providenciar reacção para todas as cargas.



## Considerações estruturais (2)

- Estrutura da asa:
  - Considerar aspectos de espaço, configuração e peso;
  - Tipo de longarina.

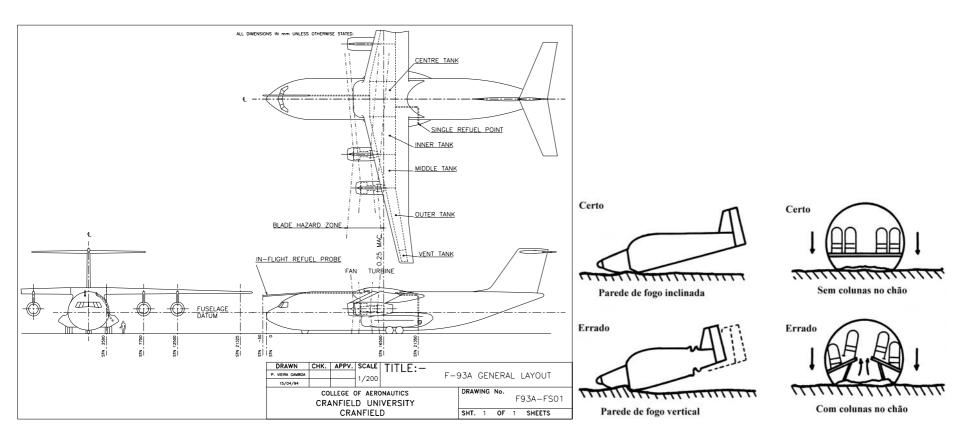


## Considerações estruturais (3)

- Espessura da estrutura:
  - Deixar espaço para a estrutura na determinação do volume interno:
    - Transporte civil de grandes dimensões 100 mm;
    - Caça 50 mm;
    - Aviação ligeira < 25 mm.

## Considerações estruturais (4)

#### • Flutter:

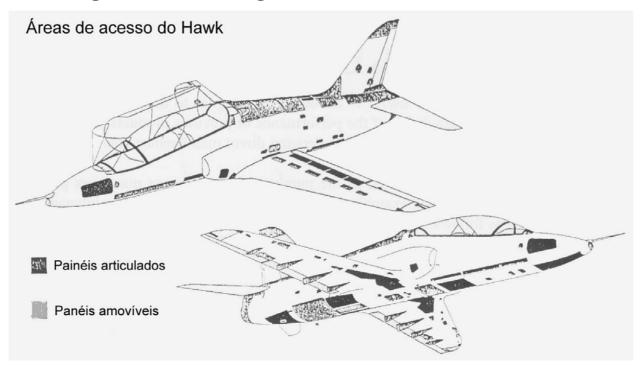

- Interacção dinâmica entre o fluído e a estrutura;
- Ocorre quando uma deflexão estrutural causa uma carga aerodinâmica que tende a aumentar a deflexão em cada oscilação até que é alcançada a falha estrutural;
- Ailerons (superfícies de controlo):
  - Aproximar CG da articulação;
  - Não ter balanceamento aerodinâmico em excesso;
  - Não ter folga nos controlos.
- Asas (superfícies sustentadoras):
  - Combinação de oscilação à torção e de oscilação à flexão;
  - Aumentar a rigidez à torção;
  - Aproximar o eixo elástico e o CG do eixo aerodinâmico.

## Considerações de segurança (1)

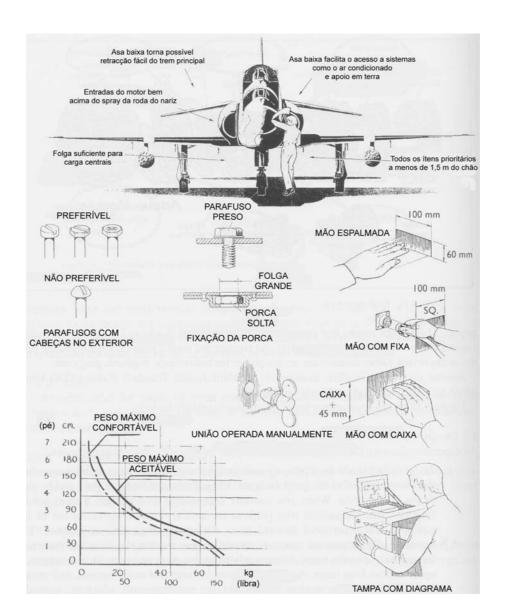
- Protecção dos ocupantes:
  - Considerar a localização de elementos que se podem soltar;
  - Considerar a estrutura de suporte das cadeiras, cintos, chão, etc.;
- Protecção dos tanques de combustível:
  - Considerar a falha do trem, o rompimento da asa pelo motor ou pelo impacto no solo, etc..

## Considerações de segurança (2)

- Falha de hélice ou estágio do motor;
- Cuidado com pormenores.



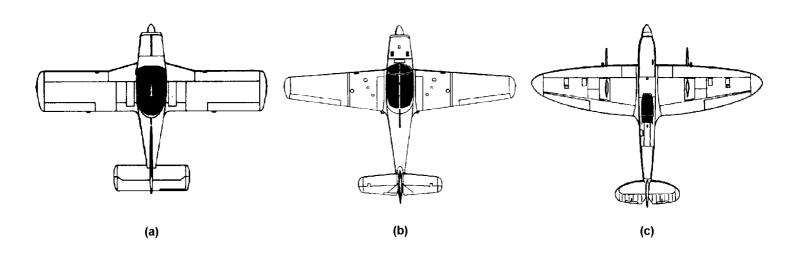

## Considerações de produção


- Simplicidade e rapidez de fabricação;
- Interfaces entre componentes diferentes;
- Ligação de sistemas;
- Partes fabricadas em diferentes empresas;
- Peças forjadas requerem mais mão de obra e mais ferramentas;
- Diminuição do número de peças:
  - Usar peças idênticas quando possível;
- Processos de união (soldadura, rebitagem, aparafusamento, colagem);
- Processos de fabrico (moldagem, estampagem, injecção).

## Considerações de manutenção (1)

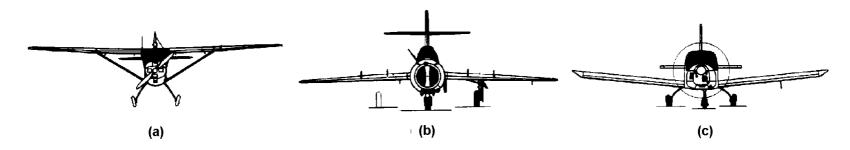
- Painéis de acesso;
- Espaço disponível para acesso a componentes;
- Acesso a lugares altos;
- Desmontagem e montagem.




## Considerações de manutenção (2)



# Selecção qualitativa da configuração (1)


- Existem aspectos de ordem prática, que se prendem com a função e operação da aeronave, que são difíceis de quantificar mas devem ser escolhidos de forma consciente;
- Estudo qualitativo e comparativo.

# Selecção qualitativa da configuração (2)



|                                    | Configuração    |             |              |  |  |  |
|------------------------------------|-----------------|-------------|--------------|--|--|--|
| Critério                           | (a)             | (b)         | (c)          |  |  |  |
|                                    | asa rectangular | asa afilada | asa elíptica |  |  |  |
| construção fácil                   | +               | 0           | -            |  |  |  |
| estrutura leve                     | -               | +           | +            |  |  |  |
| eficiência aerodinâmica            | -               | 0           | +            |  |  |  |
| qualidade de perda na ponta da asa | +               | -           | О            |  |  |  |

# Selecção qualitativa da configuração (3)



| Importância (I)             |   | Configuração |     |           |     |           |     |
|-----------------------------|---|--------------|-----|-----------|-----|-----------|-----|
| Mérito (M)                  |   | (a           |     | (b)       |     | (c)       |     |
| Pontuação (P=IxM)           |   | asa alta     |     | asa média |     | asa baixa |     |
| Critério                    | I | M            | P   | M         | P   | M         | P   |
| estabilidade                | 5 | 5            | 25  | 3         | 15  | 2         | 10  |
| manobrabilidade             | 3 | 2            | 6   | 4         | 12  | 5         | 15  |
| visibilidade em volta       | 5 | 2            | 10  | 4         | 20  | 5         | 25  |
| visibilidade em cruzeiro    | 4 | 5            | 20  | 3         | 12  | 3         | 12  |
| interferência asa/fuselagem | 5 | 5            | 25  | 4         | 20  | 3         | 15  |
| altura fuselagem            | 3 | 2            | 6   | 4         | 12  | 5         | 15  |
| danos aterragem forçada     | 5 | 2            | 10  | 4         | 20  | 5         | 25  |
| amaragem                    | 3 | 2            | 6   | 4         | 12  | 5         | 15  |
| efeito de solo              | 5 | 3            | 15  | 4         | 20  | 5         | 25  |
| bitola do trem larga        | 5 | 2            | 10  | 4         | 20  | 5         | 25  |
|                             |   |              | 133 |           | 163 |           | 182 |

## Integração da estrutura e sistemas

• É necessário manter sempre presente a necessidade de integrar todos os sistemas na aeronave;

• A configuração e arranjo interior têm que permitir essa integração de uma forma funcional e com a distribuição de



