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0. Topics

• Complex engineering problems

• Problems formulation

• Models

• Multidisciplinary Analysis

• Decomposition Architectures (Unified Description of MDO 
Architectures, Monolithic Architectures, Distributed 
Architectures, Architecture Benchmarking Issues)

• Level of Fidelity

• Decision Support
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1. Introduction

• As mentioned in Chapter 1, most engineering systems are 
multidisciplinary, motivating the development of 
multidisciplinary design optimization (MDO).

• The analysis of multidisciplinary systems requires coupled 
models and coupled solvers.

• We prefer the term component instead of discipline or model 
because it is more general.

• However, we use these terms interchangeably depending on the 
context.

• When components in a system represent different physics, the 
term multiphysics is commonly used.
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1. Introduction

• All the optimization methods covered so far apply to 
multidisciplinary problems if we view the coupled 
multidisciplinary analysis as a single analysis that computes the 
objective and constraint functions by solving the coupled model 
for a given set of design variables.

• However, there are additional considerations in the solution, 
derivative computation, and optimization of coupled systems.

• In this chapter, we introduce models and solvers for coupled 
systems.

• Finally, we introduce various MDO architectures, which are 
different options for formulating and solving MDO problems.
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2. The Need for MDO

• In Chapter 1, we mentioned that MDO increases the system 
performance, decreases the design time, reduces the total cost, 
and reduces the uncertainty at a given point in time.

• Modelling and optimizing a single discipline or component 
provide the same benefits, but broadening the modelling and 
optimization to the whole system has additional benefits.

• Even without performing any optimization, constructing a 
multidisciplinary (coupled) model that considers the whole 
engineering system is beneficial.

• Such a model ideally includes all the interactions between the 
components of the system, considering all the physics and 
beyond - other potential considerations include economics and 
human factors.
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2. The Need for MDO

• The benefit of such a model is that it reflects the true state and 
performance of the system when deployed in the real world, as 
opposed to an isolated component with assumed boundary 
conditions.

• Using such a model, designers can quantify the true impact of 
proposed changes on the whole system.

• When considering optimization, the main benefit of MDO is 
that optimizing the design variables for the various components 
simultaneously leads to a better system than when optimizing 
the design variables for each component separately.

• Currently, many engineering systems are designed and 
optimized sequentially, which leads to suboptimal designs.

• This approach is often used in industry, where engineers are 
grouped by discipline, physical subsystem, or both.
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2. The Need for MDO

• This might be perceived as the only choice when the 
engineering system is too complex and the number of engineers 
too large to coordinate a simultaneous design involving all 
groups.

• Sequential optimization is analogous to coordinate descent, 
which consists of optimizing each variable sequentially, as 
shown in Fig. 7.01.

• Instead of optimizing one variable at a time, sequential 
optimization optimizes distinct sets of variables at a time, but 
the principle remains the same.

• This approach tends to work for unconstrained problems, 
although the convergence rate is limited to being linear.



8

2. The Need for MDO

• Each variable is treated as independent in this case.

• One issue with sequential optimization is that it might converge 
to a suboptimal point for a constrained problem.

Figure 7.01 Sequential 

optimization is analogous to 

coordinate descent.
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Figure 7.02 Sequential optimization can fail to find the 

constrained optimum because the optimization with respect 

to a set of variables might not see a feasible descent direction 

that otherwise exists when considering all variables 

simultaneously.
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2. The Need for MDO

• An example of such a case is shown in Fig. 7.02, where 
sequential optimization gets stuck at the constraint because it 
cannot decrease the objective while remaining feasible by only 
moving in one of the directions.

• In this case, the optimization must consider both variables 
simultaneously to find a feasible descent direction.

• Another issue is that when there are variables that affect 
multiple disciplines (called shared design variables), we must 
make a choice about which discipline handles those variables.

• If we let each discipline optimize the same shared variable, the 
optimizations likely yield different values for those variables 
each time, in which case they will not converge.
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2. The Need for MDO

• On the other hand, if we let one discipline handle a shared 
variable, it will likely converge to a value that violates one or 
more constraints from the other disciplines.

• By considering the various components and optimizing a 
multidisciplinary performance metric with respect to as many 
design variables as possible simultaneously, MDO 
automatically finds the best trade-off between the components - 
this is the key principle of MDO.

• Suboptimal designs also result from decisions at the system 
level that involve power struggles between designers.

• In contrast, MDO provides the right trade-offs because 
mathematics does not care about politics.
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2. The Need for MDO

Example 7.1: MDO applied to wing design.

Figure 7.03 Multidisciplinary numerical model for an aircraft wing. S
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3. Complex Engineering 
Problems

• The ability to develop and deploy complex engineered systems 
such as aircraft, automobiles, and space systems seems to be 
approaching a limit. 

• Many large-scale engineering development programs are 
fraught with  exorbitant cost overruns and delays due to a 
combination of technical, organizational, and political issues.

• There is no question that systems have become more complex 
and therefore increasingly more difficult to design and manage.  

• While a consensus on a universal definition of complex 
engineered systems has not yet been reached, a defining  
characteristic of these systems is the emergent behaviour that 
current modelling and quantification methods fail to capture.

• This emergent behaviour arises from couplings in the system 
that we often do not understand and cannot model effectively, if 
at all. 
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3. Complex Engineering 
Problems

• Complex engineered systems also involve multiple disciplines, 
including disciplines that  are still extremely difficult to 
quantify (e.g., disciplines involving human behaviour) and to 
integrate into mathematical models and optimization problems. 

• When research into Multidisciplinary Design Optimization 
(MDO) began 35 years ago, the intention was to address these 
challenges and, in particular, the coupling within design 
hierarchies and between disciplines.  

• MDO has evolved remarkably since then, and the focus of MDO 
has shifted dramatically, as new faculty and researchers are 
finding new ways to use MDO methods and tools on a wide 
array of problems. 
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3. Complex Engineering 
Problems

• There have been many advances to capture, represent, and 
propagate couplings in analysis, design, and even 
organizations, yet the design of complex engineered systems 
continues to be plagued by schedule delays and cost overruns.  

• Consequently, many question the impact that MDO has had on 
industry and wonder what advances are needed to improve the 
design of complex engineered systems. 
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3. Complex Engineering Problems

3.1. Potential for MDO

• While there are still many opportunities to improve MDO 
search algorithms, optimization takes up a relatively small 
fraction of time in the development of a project - analysis still 
consumes the majority of resources.

• Large gains can still be obtained by processing data 
concurrently through improvements in decomposition 
methods, surrogate modelling techniques, and taking 
advantage of advances in multi-processor computers, field-
programmable gate arrays, and graphical processing units. 

• However, inter-processor communication will limit the parallel 
adaption of many legacy codes that are still widely used today.  

• Codes that now take several hours to run could be executed in 
fractions of a second, provided they are redeveloped and 
tailored to massively multiprocessor computers, thus rendering 
MDO qualitatively different.
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3. Complex Engineering Problems

3.1. Potential for MDO

• MDO can provide the core infrastructure for engineering design 
and development of complex engineered systems (see Fig. 
7.04), but more research and development is needed to 
integrate engineering models with manufacturing and 
fabrication models, which still tend to be separate in many 
organizations. 

• The benefit, however, would be unprecedented design agility 
within an organization, allowing it to return upstream to act on 
new information unimpeded by the cost of the already sunk 
effort.

• MDO needs to break out of its “gilded cage” and find ways to 
help conceive new designs, not just search the design space 
defined by the user.
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3. Complex Engineering Problems

3.1. Potential for MDO

• For example, topology optimization is a good example in that it 
often produces shapes that surprise designers and MDO needs 
to find ways to work in the function space so that it will help 
find  innovative solutions like those often found in nature. 

Figure 7.04 Potential for MDO in engineering design & development (D&D) process.
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3. Complex Engineering Problems

3.2. Requirements vs Objective function

• There are challenges in the design of large-scale complex 
engineered systems, in particular those that arise within the 
hierarchical approach and requirements flow-down process 
that most companies use to design such systems. 

• What are the advantages and disadvantages of using 
requirements in the flow-down process versus using objective 
functions (Figure 7.05)? 

Figure 7.05 Example of 

requirements (left) versus 

objective function (right) flow 

down.
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3. Complex Engineering Problems

3.2. Requirements vs Objective function

• On the left, requirements for thrust, fuel burn, and 
maintainability are shown as they are typically “flowed down” 
in a design hierarchy.

• On the right, objective functions for weight, lift, cost, and 
reliability are flowed down instead, to provide more flexibility 
to designers. 

• To further complicate matters, this hierarchy goes many layers 
deep (e.g., 8, 12 layers) for large-scale complex engineered 
systems. 

• The result is that it is very difficult for engineers working at the 
lowest levels to see the “big picture” and understand how their 
decisions impact everything else.
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3. Complex Engineering Problems

3.3. Selecting the right tools

• In industry, teams of people are necessary to have expertise in 
different areas. 

• Likewise, no single “tool” can be used to solve every problem; it 
is important to apply the right tool to the right problem at the 
right time.

• Understanding both of these aspects during the design of 
complex engineered systems is important and has led to MDO 
becoming a “state of mind” within their organization.  

• MDO still relies on a solid foundation (e.g., aerodynamics, 
structures, weights, noise), but it now supports multiple needs 
and plays multiple roles within their organization.

• Figure 7.06, shows how the processes and tools must be 
matched to the level of analysis and fidelity, and be used in the 
right trade space at the appropriate program milestone.
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3. Complex Engineering Problems

3.3. Selecting the right tools

• With this capability, MDO has become valuable in industry due 
to its ability to integrate, automate, and explore trade spaces.  

• However, there is still room for improvement.

Figure 7.06 Selecting the right tool for the right problem at the right time.
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3. Complex Engineering Problems

3.3. Selecting the right tools

• Two areas have received a great deal of attention:

1. Optimization, and

2. multi-fidelity modelling.

• For optimization, there is research in problem formulation, 
process steps, mixed integer nonlinear programming, and 
multi-objective programming. 

• For multi-fidelity modelling, many issues still need better 
understanding (e.g., getting the right fidelity for the right 
application, mixing and matching models at different levels of 
fidelity, and using several multi-fidelity models at once) and the 
methods are not yet mature to the point of being 
“commoditized”, making industry hesitant to adopt them. 
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3. Complex Engineering Problems

3.4. Feasibility

• In the automotive industry, for example, MDO problems are 
typically  characterized as being large-scale and multi-physics, 
requiring multiple models and simulation codes, having large 
numbers of design variables (continuous and discrete) and 
constraints, having highly nonlinear responses, and having 
computationally intensive high-fidelity models (e.g., a crash 
simulation).

• Vehicle disciplines are coupled through common design 
variables and entail analyses related to weight, safety, noise, 
vibration, and  harshness, body structure, chassis and vehicle 
durability, vehicle dynamics, and thermal and aerodynamics 
systems  engineering and climate control.

• MDO allows to search the design space and find the optimum of 
the feasible region among the various disciplines’ domains (Fig. 
7.07). 
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3. Complex Engineering Problems

3.4. Feasibility

Figure 7.07 Notional depiction of the benefits of MDO.
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3. Complex Engineering Problems

3.5. Examples

Example 7.2: Aircraft design with minimum environmental 
impact.

• The environmental impact of aircraft has been a popular topic 
in the last few years. This example shows the trade-offs between 
cost, noise, and greenhouse gas emissions, by solving a number 
of multi-objective problems.

Figure 7.08 Airbus zero-emission concepts, BWB, turboprop and turbofan. S
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3. Complex Engineering Problems

3.5. Examples

Example 7.2: Aircraft design with minimum environmental 
impact (continued).

Figure 7.09 MDO tools.

S
o

u
rc

e:
 A

n
to

in
e 

&
 K

ro
o

, 
2

0
0

4



27

3. Complex Engineering Problems

3.5. Examples

Example 7.2: Aircraft design with minimum environmental 
impact (continued).

Figure 7.10 Pareto 

fronts of fuel 

carried, emissions 

and noise vs. 

operating cost.
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3. Complex Engineering Problems

3.5. Examples

Example 7.2: Aircraft design with minimum environmental 
impact (continued).

Figure 7.11 Pareto surface 

of emissions vs. fuel 

carried vs. noise.
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3. Complex Engineering Problems

3.5. Examples

Example 7.3: Aerodynamic design of a Natural Laminar Flow 
Business Jet.

• Cruise Mach: M=1,5; Cruise Altitude: 15,240 m; Payload: 6-8 
passengers; Range: 9,260 km; Weight: 445,215 N; L/D=9-10; 
Wings designed with low sweep for natural laminar flow.

Figure 7.12 ASSET Corporation natural 

laminar wing flow business jet concept.
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3. Complex Engineering Problems

3.5. Examples

Example 7.3: Aerodynamic design of a Natural Laminar Flow 
Business Jet (continued).

• A CFD Euler code was combined with a boundary-layer solver 
to compute the flow on a wing-body.

• The fuselage spoils the laminar flow that can normally be 
maintained on a thin, low sweep wing in supersonic flow

• The goal was to reshape the fuselage at the wing-body junction 
to maximize the extent of laminar flow on the wing.

• Three design variables were used initially, with quadratic 
response surfaces and a trust region update algorithm.
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3. Complex Engineering Problems

3.5. Examples

Example 7.3: Aerodynamic design of a Natural Laminar Flow 
Business Jet (continued).

Figure 7.13 The boundary-layer solution appears superimposed on the inviscid Euler 

pressures on the surface grid.
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3. Complex Engineering Problems

3.5. Examples

Example 7.3: Aerodynamic design of a Natural Laminar Flow 
Business Jet (continued).

• Baseline design: a Sears-Haack body with wing results in early 
transition (the white areas in the boundary-layer solution).

• N* is the measure of laminar instability, with 1.0 (white) being 
the prediction of transition.

• The flow is then turbulent from the first occurrence of N*=1 to 
the trailing edge irrespective of further values of N*.
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Figure 7.14 Test article with 

Sear-Haack half-body at 1.8 

Mach, 12,192 m. Composite 

amplification N.
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3. Complex Engineering Problems

3.5. Examples

Example 7.3: Aerodynamic design of a Natural Laminar Flow 
Business Jet (continued).

• With only 3 design variables (the crosses on the fuselage outline 
that sit on the wing) and two iterations (not even near a 
converged optimization) the improvement is dramatic.
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Figure 7.15 Test article with Sear-

Haack half-body at 1.8 Mach, 12,192 

m. Optimization with 3 variables. 

Composite amplification N.
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3. Complex Engineering Problems

3.5. Examples

Example 7.3: Aerodynamic design of a Natural Laminar Flow 
Business Jet (continued).

• With 5 variables, the boundary layer is much farther from 
transition to turbulent flow as can be seen by comparing the 
green and yellow colours on this wing with the red and violet 
colours in Fig. 7.15.

• Also notice how subtle the reshaping of the fuselage is.
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Figure 7.16 Test article with Sear-

Haack half-body at 1.8 Mach, 12,192 

m. Optimization with 5 variables. 

Composite amplification N.



35

3. Complex Engineering Problems

3.5. Examples

Example 7.3: Aerodynamic design of a Natural Laminar Flow 
Business Jet (continued).

• With 5 design variables, and a few more trust-region update 
cycles, a better solution is found.
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Figure 7.17 From the nose at left, to the tail at right, this is the radius of the original (blue)

and re-designed (red) with 3 variables (left) and 5 variables (right).
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3. Complex Engineering Problems

3.5. Examples

Example 7.4: Aero-Structural Design of a Supersonic Business 
Jet.
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Figure 7.18 Baseline configuration and design variables.
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3. Complex Engineering Problems

3.5. Examples

Example 7.4: Aero-Structural Design of a Supersonic Business 
Jet (continued).
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Figure 7.19 Optimized design.
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4. Coupled Models

• A model is a set of equations that we solve to predict the state of 
the engineering system and compute the objective and 
constraint function values.

• More generally, we can have a coupled model, which consists of 
multiple models (or components) that depend on each other’s 
state variables.

• The same steps for formulating a design optimization problem 
(Chapter 1) apply in the formulation of MDO problems.

• The main difference in MDO problems is that the objective and 
constraints are computed by the coupled model.

• Once such a model is in place, the design optimization problem 
statement (Eq. 1.04) applies, with no changes needed.

• A generic example of a coupled model with three components is 
illustrated in Fig. 7.20.
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4. Coupled Models

• Here, the states of each component affect all other components. 

• However, it is common for a component to depend only on a 
subset of the other system components.

• Furthermore, we might distinguish variables between internal 
state variables and coupling.

Figure 7.20 Coupled model composed of three numerical models. S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1



40

4. Coupled Models

• Mathematically, a coupled model is no more than a larger set of 
equations to be solved, where all the governing equation 
residuals (r), the corresponding state variables (u), and all the 
design variables (x) are concatenated into single vectors.

• Then, we can still just write the whole multidisciplinary model 
as r(x,u)=0.

• However, it is often necessary or advantageous to partition the 
system into smaller components for three main reasons.

• First, specialized solvers are often already in place for a given 
set of governing equations, which may be more efficient at 
solving their set of equations than a general-purpose solver.

• In addition, some of these solvers might be black boxes that do 
not provide an interface for using alternative solvers.
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4. Coupled Models

• Second, there is an incentive for building the multidisciplinary 
system in a modular way.

• For example, a component might be useful on its own and 
should therefore be usable outside the multidisciplinary system.

• A modular approach also facilitates the extension of the 
multidisciplinary system and makes it easy to replace the model 
of a given discipline with an alternative one.

• Finally, the overall system of equations may be more efficiently 
solved if it is partitioned in a way that exploits the system 
structure.

• These reasons motivate an implementation of coupled models 
that is flexible enough to handle a mixture of different types of 
models and solvers for each component.
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4. Coupled Models

• We start the remainder of this section by defining components 
in more detail (Section 7.4.1).

• We explain how the coupling variables relate to the state 
variables (Section 7.4.2) and coupled system formulation 
(Section 7.4.3).

• Then, we discuss the coupled system structure (Section 7.4.4). 

• Finally, we explain methods for solving coupled systems 
(Section 7.4.5), including a hierarchical approach that can 
handle a mixture of models and solvers (Section 7.4.6).
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4. Coupled Models

4.1. Components

• All models can ultimately be written as a system of residuals, 
r(x,u)=0.

• When the system is large or includes sub-models, it might be 
natural to partition the system into components.

• We prefer to use the more general term components instead of 
disciplines to refer to the sub-models resulting from the 
partitioning because the partitioning of the overall model is not 
necessarily by discipline (e.g., aerodynamics, structures).

• A system model might also be partitioned by physical system 
components (e.g., wing, fuselage, or an aircraft in a fleet) or by 
different conditions applied to the same model (e.g., 
aerodynamic simulations at different flight conditions).

• The partitioning can also be performed within a given discipline 
for the same reasons cited previously.
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4. Coupled Models

4.1. Components

• In theory, the system model equations in r(x,u)=0 can be 
partitioned in any way, but only some partitions are 
advantageous or make sense.

• We denote a partitioning into n components as

where each ri and ui are vectors corresponding to the residuals and 
states of component i.

• Here, we assume that each component can drive its residuals to 
zero by varying only its states, although this is not guaranteed 
in general.

(7.01)𝑟(𝑢) = 0 ≡

𝑟1 𝑢1, … , 𝑢𝑖 , … , 𝑢𝑛 = 0
⋮

𝑟𝑖 𝑢1, … , 𝑢𝑖 , … , 𝑢𝑛 = 0
⋮

𝑟𝑛 𝑢1, … , 𝑢𝑖 , … , 𝑢𝑛 = 0
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4. Coupled Models

4.1. Components

• We have omitted the dependency on x in Eq. 7.01 because, for 
now, we just want to find the state variables that solve the 
governing equations for a fixed design.

• Components can be either implicit or explicit.

• To solve an implicit component i, we need an algorithm for 
driving the equation residuals, 𝑟𝑖 𝑢1, … , 𝑢𝑖 , … , 𝑢𝑛 , to zero by 
varying the states 𝑢𝑖 while the other states (𝑢𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖) 

remain fixed.

• This algorithm could involve a matrix factorization for a linear 
system or a Newton solver for a nonlinear system.

• An explicit component is much easier to solve because that 
components’ states are explicit functions of other components’ 
states.
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4. Coupled Models

4.1. Components

• The states of an explicit component can be computed without 
factorization or iteration.

• Suppose that the states of a component i are given by the 

explicit function 𝑢𝑖 = 𝑓 𝑢𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖.

• As previously explained, we can convert an explicit equation to 
the residual form by moving the function on the right-hand side 
to the left-hand side.

• Then, we obtain the set of residuals,

• Therefore, there is no loss of generality when using the residual 
notation in Eq. 7.01.

(7.02)𝑟𝑖 𝑢1, … , 𝑢𝑛 = 𝑢𝑖 − 𝑓 𝑢𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖
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4. Coupled Models

4.1. Components

• Most disciplines involve a mix of implicit and explicit 
components because the state variables are implicitly defined, 
whereas the objective function and constraints are usually 
explicit functions of the state variables.

• In addition, a discipline usually includes functions that convert 
inputs and outputs, as discussed in Section 7.3.

• As we will see in Section 7.4.6, the partitioning of a model can 
be hierarchical, where components are gathered in multiple 
groups.

• These groups can be nested to form a hierarchy with multiple 
levels.

• Again, this might be motivated by efficiency, modularity, or 
both.
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4. Coupled Models

4.1. Components

Example 7.5: Residuals of the coupled aerostructural problem.

• Let us formulate models for the aerostructural problem 
described in Ex. 7.1. A possible model for the aerodynamics is a 
vortex-lattice model given by the linear system

where A is the matrix of aerodynamic influence coefficients, and v 
is a vector of boundary conditions, both of which depend on the 
wing shape. The state Γ is a vector that represents the circulation 
(vortex strength) at each spanwise position on the wing, as shown 
on the left-hand side of Fig. 7.21.

• The lift and drag scalars can be computed explicitly for a given 
Γ, so we write these dependencies as L=L(Γ) and D=D(Γ), 
omitting the detailed explicit expressions for conciseness.

𝐴Γ = 𝑣
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4. Coupled Models

4.1. Components

Example 7.5: Residuals of the coupled aerostructural problem 
(continued).

• A possible model for the structures is a cantilevered beam 
modelled with Euler–Bernoulli elements,

where K is the stiffness matrix, which depends on the beam shape 
and sizing.

Figure 7.21 Aerostructural wing model showing the aerodynamic state variables (circulations ) 

on the left and structural state variables (displacements dz and rotations d) on the right. S
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50

4. Coupled Models

4.1. Components

Example 7.5: Residuals of the coupled aerostructural problem 
(continued).

• The right-hand-side vector represents the applied forces at the 
spanwise position on the beam.

• The states d are the displacements and rotations at each node, 
as shown on the right-hand side of Fig. 7.21.

• The weight does not depend on the states, and it is an explicit 
function of the beam sizing and shape, so it does not involve the 
structural model.

• The stresses are an explicit function of the displacements, so we 
can write =(𝑑), where  is a vector whose size is the number 
of elements.

• When we couple these two models, A and v depend on the wing 
displacements d, and f depends on Γ.
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4. Coupled Models

4.1. Components

Example 7.5: Residuals of the coupled aerostructural problem 
(continued).

• We can write all the implicit and explicit equations as residuals:

• The states of this system are as follows:

• This coupled system is illustrated in Fig. 7.22.

𝑟1 = 𝐴 𝑑 Γ − 𝑣 𝑑

𝑟2 = 𝐾𝑑 − 𝑞 Γ

𝑢 =
𝑢1

𝑢2
≡

Γ
𝑑

Figure 7.22 The aerostructural model couples aerodynamics 

and structures through a displacement and force transfer.
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4. Coupled Models

4.2. Models and coupling variables

• In MDO, the coupling variables are variables that need to be 
passed from the model of one discipline to the others because of 
interdependencies in the system.

• Thus, the coupling variables are the inputs and outputs of each 
model.

• Sometimes, the coupling variables are just the state variables of 
one model (or a subset of these) that get passed to another 
model, but often we need to convert between the coupling 
variables and other variables within the model.

• We represent the coupling variables by a vector ො𝑢𝑖, where the 
subscript i denotes the model that computes these variables.

• In other words, ො𝑢𝑖  contains the outputs of model i.



53

4. Coupled Models

4.2. Models and coupling variables

• A model i can take any coupling variable vector ො𝑢𝑗≠𝑖 as one of its 

inputs, where the subscript indicates that j can be the output 
from any model except its own.

• Figure 7.23 shows the inputs and outputs for a model.

Figure 7.23 In the general case, a model may require 

conversions of inputs and outputs distinct from the states 

that the solver computes. S
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4. Coupled Models

4.2. Models and coupling variables

• The model solves for the set of its state variables, 𝑢𝑖.

• The residuals in the solver depend on the input variables 
coming from other models.

• In general, this is not a direct dependency, so the model may 
require explicit function (𝑃𝑖) that converts the inputs (ො𝑢𝑗≠𝑖) to 

the required parameters 𝑝𝑖.

• These parameters remain fixed when the model solves its 
implicit equations for 𝑢𝑖.

• After the model solves for its state variables (𝑢𝑖), there may be 
another explicit function (𝑄𝑖) that converts these states to 
output variables (ො𝑢𝑖) for the other models.

• The function (𝑄𝑖) typically reduces the number of output 
variables relative to the number of internal states, sometimes 
by orders of magnitude.
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4.2. Models and coupling variables

• The model shown in Fig. 7.23 can be viewed as an implicit 
function that computes its outputs as a function of all the 
inputs, so we can write ො𝑢𝑖 = 𝑈𝑖(ො𝑢𝑗≠𝑖).

• The model contains three components: two explicit and one 
implicit.

• We can convert the explicit components to residual equations 
using Eq. 7.02 and express the model as three sets of residuals 
as shown in Fig. 7.24.

• The result is a group of three components that we can represent 
as 𝑟 𝑢 = 0.

• This conversion and grouping hint at a powerful concept that 
we will use later, which is hierarchy, where components can be 
grouped using multiple levels.
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4. Coupled Models

4.2. Models and coupling variables

Figure 7.24 The conversion of inputs and outputs can be 

represented as explicit components with corresponding state 

variables. Using this form, any model can be entirely 

expressed r(u)=0. The inputs could be any subset of u except 

for the ones handled in the component (ui-1, ui, and ui+1).
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4. Coupled Models

4.3. Residuals and functional forms

• The system-level representation of a coupled system is 
determined by the variables that are “seen” and controlled at 
this level.

• Representing all models and variable conversions as r(u)=0 
leads to the residual form of the coupled system, already 
written in Eq. 7.01, where n is the number of components.

• In this case, the system level has direct access and control over 
all the variables.

• This residual form is desirable because, as we will see later in 
this chapter, it enables us to formulate efficient ways to solve 
coupled systems and compute their derivatives.

• The functional form is an alternate system-level representation 
of the coupled system that considers only the coupling variables 
and expresses them as implicit functions of the others.
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4. Coupled Models

4.3. Residuals and functional forms

• We can write this form as

where m is the number of models and m≤n.

• If a model is a black box and we have no access to the residuals 
and the conversion functions, this is the only form we can use.

• In this case, the system-level solver only iterates the coupling 
variables ො𝑢 and relies on each model i to solve or compute its 
outputs ො𝑢𝑖.

(7.03)ො𝑢 = 𝑈(ො𝑢) ⟺

ො𝑢1 = 𝑈1 ො𝑢2, … , ො𝑢𝑚

⋮
ො𝑢𝑖 = 𝑈𝑖 ො𝑢1, … , ො𝑢𝑖−1, ො𝑢𝑖+1, … , ො𝑢𝑚

⋮
ො𝑢𝑚 = 𝑈𝑖 ො𝑢1, … , ො𝑢𝑚 − 1
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4. Coupled Models

4.3. Residuals and functional forms

• These two forms are shown in Fig. 7.25 for a generic example 
with three models (or disciplines).

• The left of this figure shows the residual form, where each 
model is represented as residuals and states, as in Fig. 7.24. 

• This leads to a system with nine sets of residuals and 
corresponding state variables.

• The number of state variables in each of these sets is not 
specified but could be any number.

• The functional form of these three models is shown on the right 
of Fig. 7.25.

• In the case where the model is a black box, the residuals and 
conversion functions shown in Fig. 7.23 are hidden, and the 
system level can only access the coupling variables.
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4. Coupled Models

4.3. Residuals and functional forms

Figure 7.25 Two system-level views of coupled system with three solvers. In the residual form, all 

components and their states are exposed (left); in the functional (black-box) form, only inputs and 

outputs for each solver are visible (right), where ො𝑢1 ≡ 𝑢3, ො𝑢2 ≡ 𝑢6, and ො𝑢3 ≡ 𝑢9. S
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4. Coupled Models

4.3. Residuals and functional forms

• In this case, we consider each black-box model to be a 
component.

• In an even more general case, these two views can be mixed in a 
coupled system.

• The models in residual form expose residuals and states, in 
which case, the model potentially has multiple components at 
the system level.

• The models in functional form only expose inputs and outputs; 
in that case, the model is just a single component.
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4. Coupled Models

4.4. Coupled system structure

• To show how multidisciplinary systems are coupled, we use a 
design structure matrix (DSM), which is sometimes referred to 
as a dependency structure matrix or an N2 matrix.

• An example of the DSM for a hypothetical system is shown on 
the left in Fig. 7.26.

• In this matrix, the diagonal elements represent the 
components, and the off-diagonal entries denote coupling 
variables.

• A given coupling variable is computed by the component in its 
row and is passed to the component in its column.

• As shown in the DSM in Fig. 7.26, there are generally off-
diagonal entries both above and below the diagonal, where the 
entries above feed forward, whereas entries below feed 
backward.
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4. Coupled Models

4.4. Coupled system structure

• The mathematical representation of these dependencies is 
given by a graph (Fig. 7.26, right), where the graph nodes are 
the components, and the edges represent the information 
dependency.

• This graph is a directed graph because, in general, there are 
three possibilities for coupling two components: single coupling 
one way, single coupling the other way, and two-way coupling. 

Figure 7.26 Different ways to represent the 

dependencies of a hypothetical coupled system.
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4. Coupled Models

4.4. Coupled system structure

• A directed graph is cyclic when there are edges that form a 
closed loop (i.e., a cycle).

• The graph on the right of Fig. 7.26 has a single cycle between 
components B and C.

• When there are no closed loops, the graph is acyclic.

• In this case, the whole system can be solved by solving each 
component in turn without iterating.

• The DSM can be viewed as a matrix where the blank entries are 
zeros.

• For real-world systems, this is often a sparse matrix.

• This means that in the corresponding DSM, each component 
depends only on a subset of all the other components.

• We can take advantage of the structure of this sparsity in the 
solution of coupled systems.
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4. Coupled Models

4.4. Coupled system structure

• The components in the DSM can be reordered without 
changing the solution of the system.

• This is analogous to reordering sparse matrices to make linear 
systems easier to solve.

• In one extreme case, reordering could achieve a DSM with no 
entries below the diagonal.

• In that case, we would have only feed-forward connections, 
which means all dependencies could be resolved in one forward 
pass (as we will see in Ex. 7.06).

• This is analogous to having a linear system where the matrix is 
lower triangular, in which case the linear solution can be 
obtained with forward substitution.

• The sparsity of the DSM can be exploited using ideas from 
sparse linear algebra.
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4. Coupled Models

4.4. Coupled system structure

• For example, reducing the bandwidth of the matrix (i.e., 
moving nonzero elements closer to the diagonal) can also be 
helpful.

• This can be achieved using algorithms such as Cuthill–McKee, 
reverse Cuthill–McKee (RCM), and approximate minimum 
degree (AMD) ordering.

• We now introduce an extended version of the DSM, called 
XDSM, which we use later in this chapter to show the process in 
addition to the data dependencies.

• Figure 7.27 shows the XDSM for the same four-component 
system.

• When showing only the data dependencies, the only difference 
relative to DSM is that the coupling variables are labelled 
explicitly, and the data paths are drawn.
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4. Coupled Models

4.4. Coupled system structure

• In the next section, we add the process to the XDSM.

Figure 7.27 XDSM showing data dependencies for 

the four-component coupled system of Fig. 7.26.
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4. Coupled Models

4.5. Solving coupled numerical models

• The solution of coupled systems, also known as 
multidisciplinary analysis (MDA) usually involves multiple 
levels of solvers.

• When using the residual form described in Section 7.4.3, any 
solver (such as a Newton solver) can be used to solve for the 
state of all components (the entire vector u) simultaneously to 
satisfy r(u)=0 for the coupled system (Eq. 7.01).

• This is a monolithic solution approach.

• When using the functional form, we do not have access to the 
internal states of each model and must rely on the model’s 
solvers to compute the coupling variables.
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4. Coupled Models

4.5. Solving coupled numerical models

• The model solver is responsible for computing its output 
variables for a given set of coupling variables from other 
models, that is,

• In some cases, we have access to the model’s internal states, but 
we may want to use a dedicated solver for that model anyway.

• Because each model, in general, depends on the outputs of all 
other models, we have a coupled dependency that requires a 
solver to resolve.

• This means that the functional form requires two levels: one for 
the model solvers and another for the system-level solver.

• At the system level, we only deal with the coupling variables 
(ො𝑢), and the internal states (u) are hidden.

(7.04)ො𝑢𝑖 = 𝑈𝑖(ො𝑢𝑗≠𝑖)
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4. Coupled Models

4.5. Solving coupled numerical models

• The rest of this section presents several system-level solvers. 

• We will refer to each model as a component even though it is a 
group of components in general.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.1. Nonlinear block Jacobi

• The most straightforward way to solve coupled numerical 
models (systems of components) is through a fixed-point 
iteration.

• Here, instead of updating one state at a time, we update a 
vector of coupling variables at each iteration corresponding to a 
subset of the coupling variables in the overall coupled system.

• Obtaining this vector of coupling variables generally involves 
the solution of a nonlinear system.

• Therefore, these are called nonlinear block variants of the linear 
fixed-point iteration methods.

• The nonlinear block Jacobi method requires an initial guess for 
all coupling variables to start with and calls for the solution of 
all components given those guesses.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.1. Nonlinear block Jacobi

• Once all components have been solved, the coupling variables 
are updated based on the new values computed by the 
components, and all components are solved again.

• This iterative process continues until the coupling variables do 
not change in subsequent iterations.

• Because each component takes the coupling variable values 
from the previous iteration, which have already been computed, 
all components can be solved in parallel without 
communication.

• This algorithm is formalized in Alg. 7.1.

• When applied to a system of components, we call it the block 
Jacobi method, where block refers to each component.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.1. Nonlinear block Jacobi

• The nonlinear block Jacobi method is also illustrated using an 
XDSM in Fig. 7.28 for three components.

• The only input is the initial guess for the coupling variables, 

ො𝑢(0).

• The MDA block (step 0) is responsible for iterating the system-
level analysis loop and for checking if the system has converged. 

• The process line is shown as a thin black line to distinguish it 
from the data dependency connections (thick grey lines) and 
follows the sequence of numbered steps.

• The analyses for each component are all numbered the same 
(step 1) because they can be done in parallel.

• Each component returns the coupling variables it computes to 
the MDA iterator, closing the loop between step 2 and step 1 
(denoted as “2 → 1”).
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.1. Nonlinear block Jacobi

Figure 7.28 Nonlinear block Jacobi solver for a 

three-component coupled system. S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1



75

4. Coupled Models
4.5. Solving coupled numerical models

4.5.1. Nonlinear block Jacobi

Algorithm 7.1: Nonlinear block Jacobi algorithm
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

• The nonlinear block Gauss–Seidel algorithm is similar to its 
Jacobi counterpart.

• The only difference is that when solving each component, we 
use the latest coupling variables available instead of just using 
the coupling variables from the previous iteration.

• We cycle through each component i=1,…,m in order.

• When computing ො𝑢𝑖  by solving component i, we use the latest 
available states from the other components.

• Figure 7.29 illustrates this process.

• Both Gauss–Seidel and Jacobi converge linearly, but Gauss–
Seidel tends to converge more quickly because each equation 
uses the latest information available.

• However, unlike Jacobi, the components cannot be solved in 
parallel.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

Figure 7.29 Nonlinear block Gauss–Seidel solver for 

a three-discipline coupled system. S
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

• The convergence of nonlinear block Gauss–Seidel can be 
improved by using a relaxation.

• Suppose that ො𝑢𝑡𝑒𝑚𝑝 is the state of component i resulting from 

the solving of that component given the states of all other 
components, as we would normally do for each block in the 
Gauss–Seidel or Jacobi method.

• If we used this, the step would be

• Instead of using that step, relaxation updates the variables as 

where 𝜃(𝑘) is the relaxation factor, and ∆ො𝑢𝑖
(𝑘)

 is the previous update 

for component i.

(7.05)∆ො𝑢𝑖
(𝑘)

= ො𝑢𝑡𝑒𝑚𝑝 − ො𝑢𝑖
(𝑘)

(7.06)ො𝑢𝑖
(𝑘)

= ො𝑢𝑡𝑒𝑚𝑝 + 𝜃(𝑘)∆ො𝑢𝑖
(𝑘)
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

• The relaxation factor, 𝜃, could be a fixed value, which would 
normally be less than 1 to dampen oscillations and avoid 
divergence.

• Aitken’s method improves on the fixed relaxation approach by 
adapting the 𝜃.

• The relaxation factor at each iteration changes based on the last 
two updates according to

• Aitken’s method usually accelerates convergence and has been 
shown to work well for nonlinear block Gauss–Seidel with 
multidisciplinary systems.

(7.07)𝜃(𝑘) = 𝜃(𝑘−1) 1 −
∆ො𝑢(𝑘) − ∆ො𝑢(𝑘−1) 𝑇

∆ො𝑢(𝑘)

∆ො𝑢(𝑘) − ∆ො𝑢(𝑘−1) 2
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

• It is advisable to override the value of the relaxation factor 
given by Eq. 7.07 to keep it between 0.25 and 2.

• The steps for the full Gauss–Seidel algorithm with Aitken 
acceleration are listed in Alg. 7.2.

• The order in which the components are solved makes a 
significant difference in the efficiency of the Gauss–Seidel 
method.

• In the best possible scenario, the components can be reordered 
such that there are no entries in the lower diagonal of the DSM, 
which means that each component depends only on previously 
solved components, and there are therefore no feedback 
dependencies (see Ex. 7.6).

• In this case, the block Gauss–Seidel method would converge to 
the solution in one forward sweep.
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4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

Algorithm 7.2: Nonlinear block Gauss–Seidel algorithm with 
Aitken acceleration
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

• In the more general case, even though we might not eliminate 
the lower diagonal entries completely, minimizing these entries 
by reordering results in better convergence.

• This reordering can also mean the difference between 
convergence and nonconvergence.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

Example 7.6: Making Gauss–Seidel converge in one pass by 
reordering components.

• Consider the coupled system of six components with the 
dependencies shown on the left in Fig. 7.30.

• This system includes both feed-forward and feedback 
dependencies and would normally require an iterative solver.

• In this case, however, we can reorder the components as shown 
on the right in Fig. 7.30 to eliminate the feedback loops.

• Then, we only need to solve the sequence of components E → C 
→ A → D → F → B once to get a converged coupled solution.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.2. Nonlinear block Gauss-Seidel

Example 7.6: Making Gauss–Seidel converge in one pass by 
reordering components (continued).

Figure 7.30 The solution of the components of the system shown on the left can be reordered to 

get the equivalent system shown on the right. This new system has no feedback loops and can 

therefore be solved in one pass of a Gauss–Seidel solver. S
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• As mentioned previously, Newton’s method can be applied to 
the residual form illustrated in Fig. 7.25 and expressed in Eq. 
7.01.

• Recall that in this form, we have n components and the 
coupling variables are part of the state variables.

• Concatenating the residuals and state variables for all 
components and applying Newton’s method yields the coupled 
block Newton system,

(7.08)
𝜕𝑟

𝜕𝑢
∆𝑢 = −𝑟 ⟺

𝜕𝑟1

𝜕𝑢1

𝜕𝑟1

𝜕𝑢2

𝜕𝑟2

𝜕𝑢1

𝜕𝑟2

𝜕𝑢2

⋯
𝜕𝑟1

𝜕𝑢𝑛

⋯
𝜕𝑟2

𝜕𝑢𝑛

⋮ ⋮
𝜕𝑟𝑛

𝜕𝑢1

𝜕𝑟𝑛

𝜕𝑢2

⋱ ⋮

⋯
𝜕𝑟𝑛

𝜕𝑢𝑛

∆𝑢1

∆𝑢2

⋮
∆𝑢𝑛

= −

𝑟1

𝑟2

⋮
𝑟𝑛
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• We can solve this linear system to compute the Newton step in 
for all components’ state variables u simultaneously, and then 
iterate to satisfy r(u)=0 for the complete system.

• This is the monolithic Newton approach illustrated on the left 
panel of Fig. 7.31.

• As with any Newton method, a globalization strategy (such as a 
line search) is required to increase the likelihood of successful 
convergence when starting far from the solution.

• Even with such a strategy, Newton’s method does not 
necessarily converge robustly.

• A variation on this monolithic Newton approach uses two-level 
solver hierarchy, as illustrated on the middle panel of Fig. 7.31. 
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4.5. Solving coupled numerical models

4.5.3. Newton’s method

• The system-level solver is the same as in the monolithic 
approach, but each component is solved first using the latest 
states.

Figure 7.31 There are three options for solving a coupled system with Newton’s method. The monolithic 

approach (left) solves for all state variables simultaneously. The block approach (middle) solves the same 

system as the monolithic approach, but solves each component for its states at each iteration. The black 

box approach (right) applies Newton’s method to the coupling variables.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• The Newton step for each component i is given by

where 𝑢𝑗 represents the states from other components (i.e., 𝑗 ≠ 𝑖), 

which are fixed at this level. 

• Each component is solved before taking a step in the entire 
state vector (Eq. 7.08).

• The procedure is given in Alg. 7.3.

• We call this the full-space hierarchical Newton approach 
because the system-level solver iterates the entire state vector. 

• Solving each component before taking each step in the full 
space Newton iteration acts as a preconditioner.

(7.09)
𝜕𝑟𝑖

𝜕𝑟𝑖
∆𝑢𝑖 = −𝑟𝑖 𝑢𝑖; 𝑢𝑗≠𝑖
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4.5. Solving coupled numerical models

4.5.3. Newton’s method

Algorithm 7.3: Full-space hierarchical Newton
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4.5. Solving coupled numerical models

4.5.3. Newton’s method

• In general, the monolithic approach is more efficient, and the 
hierarchical approach is more robust, but these characteristics 
are case-dependent.

• Newton’s method can also be applied to the functional form 
illustrated in Fig. 7.32 to solve only for the coupling variables. 

• We call this the reduced-space hierarchical Newton approach 
because the system-level solver iterates only in the space of the 
coupling variables, which is smaller than the full space of the 
state variables.

• Using this approach, the solver for each component can be 
considered to be a black box, as we did for the nonlinear block 
Jacobi and Gauss–Seidel solvers.

• This approach is illustrated on the right panel of Fig. 7.31.
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4.5. Solving coupled numerical models

4.5.3. Newton’s method

Figure 7.32 Full-space Newton solver for a three-component coupled system.

S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1



92

4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• To apply Newton’s method in this case, we express the 
functional form (Eq. 7.04) as residuals by using the same 
technique we used to convert an explicit function to the residual 
form (Eq. 7.02).

• This yields

where ො𝑢𝑖  represents the guesses for the coupling variables, and 𝑈𝑖

represents the actual computed values. 

(7.10)Ƹ𝑟𝑖 ො𝑢 = ො𝑢𝑖 − 𝑈𝑖 𝑢𝑗≠𝑖
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• For a system of nonlinear residual equations, the Newton step 

in the coupling variables, ∆ො𝑢 = ො𝑢(𝑘+1) − ො𝑢(𝑘), can be found by 
solving the linear system

where we need the partial derivatives of all the residuals with 
respect to the coupling variables to form the Jacobian matrix 

Τ𝜕 Ƹ𝑟 𝜕 ො𝑢.

• The Jacobian can be found by differentiating Eq. 7.10 with 
respect to the coupling variables.

(7.11)ቤ
𝜕 Ƹ𝑟

𝜕 ො𝑢
ෝ𝑢=ෝ𝑢(𝑘)

∆ ො𝑢 = − Ƹ𝑟 ො𝑢(𝑘)
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• Then, expanding the concatenated residuals and coupling 
variable vectors yields

• The residuals in the right-hand side of this equation are 
evaluated at the current iteration.

• The derivatives in the block Jacobian matrix are also computed 
at the current iteration.

(7.12)

𝐼 −
𝜕𝑈1

𝜕 ො𝑢2

−
𝜕𝑈2

𝜕 ො𝑢1
𝐼

⋯ −
𝜕𝑈1

𝜕 ො𝑢𝑚

⋯ −
𝜕𝑈2

𝜕 ො𝑢𝑚

⋮ ⋮

−
𝜕𝑈𝑚

𝜕 ො𝑢1
−

𝜕𝑈𝑚

𝜕 ො𝑢2

⋱ ⋮
⋯ 𝐼

∆ ො𝑢1

∆ ො𝑢2

⋮
∆ ො𝑢𝑚

= −

ො𝑢1 − 𝑈1 ො𝑢2, … , ො𝑢𝑚

ො𝑢2 − 𝑈2 ො𝑢1, ො𝑢3, … , ො𝑢𝑚

⋮
ො𝑢𝑚 − 𝑈𝑚 ො𝑢1, … , ො𝑢𝑚−1
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• Each row i represents the derivatives of the (potentially 
implicit) function that computes the outputs of component i 
with respect to all the inputs of that component.

• The Jacobian matrix in Eq. 7.12 has the same structure as the 
DSM (but transposed) and is often sparse.

• The derivatives are partial derivatives in the sense that they do 
not take into account the coupled system.

• However, they must take into account the respective model and 
can be computed using implicit analytic methods when the 
model is implicit.

• This Newton solver is shown in Fig. 7.33 and detailed in Alg. 
7.4.

• Each component corresponds to a set of rows in the block 
Newton system (Eq. 7.12). 
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4.5. Solving coupled numerical models

4.5.3. Newton’s method

Figure 7.33 Reduced-space Newton solver for a three-component coupled system..
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• To compute each set of rows, the corresponding component 
must be solved, and the derivatives of its outputs with respect 
to its inputs must be computed as well.

• Each set can be computed in parallel, but once the system is 
assembled, a step in the coupling variables is computed by 
solving the full system (Eq. 7.12).

• These coupled Newton methods have similar advantages and 
disadvantages to the plain Newton method.

• The main advantage is that it converges quadratically once it is 
close enough to the solution (if the problem is well-
conditioned).

• The main disadvantage is that it might not converge at all, 
depending on the initial guess.
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

Algorithm 7.4: Reduced-space hierarchical Newton
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4.5. Solving coupled numerical models

4.5.3. Newton’s method

• One disadvantage specific to the coupled Newton methods is 
that it requires formulating and solving the coupled linear 
system (Eq. 7.12) at each iteration.

• If the Jacobian Τ𝜕𝑟 𝜕𝑢 is not readily available, Broyden’s 
method can compute an approximate of the Jacobian inverse 

( ሚ𝐽−1) by starting with a guess (say, ሚ𝐽0
−1 = 0) and then using the 

update

where ∆𝑢(𝑘) is the last step in the states, and ∆𝑟(𝑘) is the difference 
between the two latest residual vectors. 

(7.13)ሚ𝐽−1(𝑘+1)
= ሚ𝐽−1(𝑘)

+
∆𝑢(𝑘) − ሚ𝐽−1(𝑘)

∆𝑟(𝑘) ∆𝑢(𝑘)𝑇

∆𝑟(𝑘)𝑇
∆𝑟(𝑘)
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4. Coupled Models
4.5. Solving coupled numerical models

4.5.3. Newton’s method

• Because the inverse is provided explicitly, we can find the 
update by performing the multiplication

(7.14)∆𝑢 𝑘 = ሚ𝐽−1𝑟(𝑘)
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4. Coupled Models

4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver comparison.

• We now apply the coupled solution methods presented in this 
section to the implicit parts of the aerostructural model, which 
are the two first residuals from Ex. 7.5,

and the variables are the circulations and displacements,

• In this case, the linear systems defined by 𝑟1 and 𝑟2 are small 
enough to be solved using a direct method, such as LU 
factorization.

• Thus, we can solve 𝑟1 for Γ, for a given 𝑑, and solve 𝑟2 for 𝑑, for 
a given Γ. 

𝑟 =
𝑟1

𝑟2
=

𝐴 𝑑 Γ − 𝑣 𝑑
𝐾𝑑 − 𝑞 Γ

𝑢 =
𝑢1

𝑢2
≡

Γ
𝑑
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4. Coupled Models

4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver comparison (continued).

• Also, no conversions are involved, so the set of coupling 
variables is equivalent to the set of state variables ( ො𝑢 = 𝑢).

Solving with nonlinear block Jacobi:

• Using the nonlinear block Jacobi method (Alg. 7.1), we start 
with an initial guess (e.g., Γ=0, d=0) and solve 𝑟1=0 and 𝑟2=0 
separately for the new values of Γ and d, respectively.

• Then we use these new values of Γ and d to solve 𝑟1=0 and 𝑟2=0 
again, and so on until convergence.
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4. Coupled Models

4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver comparison (continued).

Solving with nonlinear block Gauss-Seidel:

• Using the nonlinear block Gauss–Seidel method (Alg. 7.2) is 
similar, but we need to solve the two components in sequence.

• We can start by solving 𝑟1=0 for Γ with d=0.

• Then we use the Γ obtained from this solution in 𝑟2 and solve 
for a new d.

• We now have a new d to use in 𝑟1 to solve for a new Γ, and so 
on.
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4. Coupled Models

4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver comparison (continued).

Solving with Newton:

• The Jacobian for the Newton system (Eq. 7.08) is

because

𝜕𝑟

𝜕𝑢
=

𝜕𝑟1

𝜕𝑢1

𝜕𝑟1

𝜕𝑢2

𝜕𝑟2

𝜕𝑢1

𝜕𝑟2

𝜕𝑢2

=
𝐴

𝜕𝐴

𝜕𝑑
Γ −

𝜕𝑣

𝜕𝑑

−
𝜕𝑞

𝜕Γ
𝐾

𝑟 =
𝑟1

𝑟2
=

𝐴 𝑑 Γ − 𝑣 𝑑
𝐾𝑑 − 𝑞 Γ

𝑢 =
𝑢1

𝑢2
≡

Γ
𝑑
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4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver comparison (continued).

Solving with Newton (continued):

• We already have the block diagonal matrices in this Jacobian 
from the governing equations, but we need to compute the off-
diagonal partial derivative blocks, which can be done 
analytically or with algorithmic differentiation (AD).

• The monolithic Newton approach does not converge in this 
case.

• We apply the full-space hierarchical approach (Alg. 7.3), which 
converges more reliably.

• In this case, the reduced-space approach is not used because 
there is not distinction between coupling variables and state 
variables.
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4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver 
comparison (continued).

• The solution is shown in Fig. 7.34, 
where we plot the variation of lift, 
vertical displacement, and rotation 
along the span.

• The vertical displacements are a subset 
of d, and the rotations are a conversion 
of a subset of d representing the 
rotations of the wing section at each 
spanwise location.

• The lift is the vertical force at each 
spanwise location, which is 
proportional to Γ times the wing chord 
at that location.

Figure 7.34 Spanwise distribution 

of the lift, wing rotation (d), and 

vertical displacement (d) for the 

coupled aerostructural solution. S
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4. Coupled Models

4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver comparison (continued).

• In Fig. 7.35, we compare the convergence of the methods 
introduced in this section.

• The Jacobi method has the poorest convergence rate and 
oscillates.

• The Gauss–Seidel method is much better, and it is even better 
with Aitken cceleration.

• Newton has the highest convergence rate, as expected.

• Broyden performs about as well as Gauss–Seidel in this case.
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4. Coupled Models

4.5. Solving coupled numerical models

Example 7.7: Aerostructural solver comparison (continued).

Figure 7.34 Convergence of each solver for aerostructural system.
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4. Coupled Models

4.6. Hierarchical solvers for coupled 
systems

• The coupled solvers we discussed so far already use a two-level 
hierarchy because they require a solver for each component and 
a second level that solves the group of components.

• This hierarchy can be extended to three and more levels by 
making groups of groups.

• Modular analysis and unified derivatives (MAUD) is a 
mathematical framework developed for this purpose.

• Using MAUD, we can mix residual and functional forms and 
seamlessly handle implicit and explicit components.†

• The hierarchy of solvers can be represented as a tree data 
structure, where the nodes are the solvers and the leaves are the 
components, as shown in Fig. 7.35 for a system of six 
components and five solvers.
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4. Coupled Models

4.6. Hierarchical solvers for coupled 
systems

• The root node ultimately solves the complete system, and each 
solver is responsible for a subsystem and thus handles a subset 
of the variables.

Figure 7.35 A system of components can be organized in a solver hierarchy.
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4. Coupled Models

4.6. Hierarchical solvers for coupled 
systems

• There are two possible types of solvers: monolithic and 
recursive.

• Monolithic solvers can only have components as children and 
handle all their variables simultaneously using the residual 
form.

• Of the methods we introduced in the previous section, only 
monolithic and full-space Newton (and Broyden) can do this for 
nonlinear systems.

• Linear systems can be solved in a monolithic fashion using a 
direct solver or an iterative linear solver, such as a Krylov 
subspace method.

• Recursive solvers, as the name implies, visit all the child nodes 
in turn.
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4.6. Hierarchical solvers for coupled 
systems

• If a child node turns out to be another recursive solver, it does 
the same until a component is reached.

• The block Jacobi and Gauss–Seidel methods can be used as 
recursive solvers for nonlinear and linear systems.

• The reduced-space Newton and Broyden methods can also be 
recursive solvers.

• For the hypothetical system shown in Fig. 7.35, the numbers 
show the order in which each solver and component would be 
called.

• The hierarchy of solvers should be chosen to exploit the system 
structure.

• MAUD also facilitates parallel computation when subsystems 
are uncoupled, which provides further opportunities to exploit 
the structure of the problem.



113

4. Coupled Models

4.6. Hierarchical solvers for coupled 
systems

• Figs. 7.36 and 7.37 show several possibilities.

Figure 7.37 Three examples of a system of four components with a two-level solver hierarchy.
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Figure 7.36 There are three main possibilities involving two components.
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4.6. Hierarchical solvers for coupled 
systems

• The three two-component systems in Fig. 7.36 show three 
different coupling modes.

• In the first mode, the two components are independent of each 
other and can therefore be solved in parallel using any solvers 
appropriate for each of the components.

• In the serial case, component 2 depends on 1, but not the other 
way around.

• Therefore, we can converge to the coupled solution using one 
block Gauss–Seidel iteration.

• If the dependency were reversed (feedback but no feed 
forward), the order of the two components would be switched. 

• Finally, the fully coupled case requires an iterative solution 
using any of the methods from Section 7.4.5.

• MAUD is designed to handle these three coupling modes.
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4.6. Hierarchical solvers for coupled 
systems

• Figure 7.37 shows three possibilities for a four-component 
system where two levels of solvers can be used.

• In the first one (on the left), we require a coupled solver for 
components 1 and 2 and another for components 3 and 4, but 
no further solving is needed.

• In the second (middle pane of Fig. 7.37), components 1 and 2 as 
well as components 3 and 4 can be solved serially, but these two 
groups require a coupled solution.

• For the two levels to converge, the serial and coupled solutions 
are called repeatedly until the two solvers agree with each 
other.

• The third possibility (right pane of Fig. 7.37) has two systems 
that have two independent components, which can each be 
solved in parallel, but the overall system is coupled.
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4.6. Hierarchical solvers for coupled 
systems

• With MAUD, we can set up any of these sequences of solvers 
through the solver hierarchy tree, as illustrated in Fig. 7.35.

• To solve the system from Ex. 7.3 using hierarchical solvers, we 
can use the hierarchy shown in Fig. 7.38.

• We form three groups with three components each.

• Each group includes the input and output conversion 
components (which are explicit) and one implicit component 
(which requires its own solver).

• Serial solvers can be used to handle the input and output 
conversion components.

• A coupled solver is required to solve the entire coupled system, 
but the coupling between the groups is restricted to the 
corresponding outputs (components 3, 6, and 9).
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4.6. Hierarchical solvers for coupled 
systems

• Alternatively, we could apply a coupled solver to the functional 
representation shown on the right of Fig. 7.25.

• This would also use two levels of solvers: a solver within each 
group and a system-level solver for the coupling of the three 
groups.

• However, the system-level solver would handle coupling 
variables rather than the residuals of each component.

Figure 7.38 For the case of Fig. 7.25, we can 

use a serial evaluation within each of the three 

groups and require a coupled solver to handle 

the coupling between the three groups. S
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4.6. Hierarchical solvers for coupled 
systems

• The development of coupled solvers is often done for a specific 
set of models from scratch, which requires substantial effort. 

• OpenMDAO (https://openmdao.org/) is an open-source 
framework that facilitates such efforts by implementing MAUD.

• All the solvers introduced in this chapter are available in 
OpenMDAO.

• This framework also makes it easier to compute the derivatives 
of the coupled system, as we will see in the next section.

• Users can assemble systems of mixed explicit and implicit 
components.

• For implicit components, they must give OpenMDAO access to 
the residual computations and the corresponding state 
variables.

https://openmdao.org/
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4.6. Hierarchical solvers for coupled 
systems

• For explicit components, OpenMDAO only needs access to the 
inputs and the outputs, so it supports black-box models.

• OpenMDAO is usually more efficient when the user provides 
access to the residuals and state variables instead of treating 
models as black boxes.

• A hierarchy of multiple solvers can be set up in OpenMDAO, as 
illustrated in Fig. 7.35.

• OpenMDAO also provides the necessary interfaces for user-
defined solvers.

• Finally, OpenMDAO encourages coupling through memory, 
which is beneficial for numerical precision and computational 
efficiency.
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5. Coupled Derivative Computation

• The gradient-based optimization algorithms from Chapters 3 
and 4 require the derivatives of the objective and constraints 
with respect to the design variables.

• Any of the methods for computing derivatives can be used to 
compute the derivatives of coupled models, but some 
modifications are required.

• The main difference is that in MDO, the computation of the 
functions of interest (objective and constraints) requires the 
solution of the multidisciplinary model.
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5. Coupled Derivative Computation

5.1. Finite differences

• The finite-difference method can be used with no modification, 
as long as an MDA is converged well enough for each 
perturbation in the design variables.

• The cost of computing derivatives with the finite-difference 
method is proportional to the number of variables.

• The constant of proportionality can increase significantly 
compared with that of a single discipline because the MDA 
convergence might be slow (especially if using a block Jacobi or 
Gauss–Seidel iteration).

• The accuracy of finite-difference derivatives depends directly 
on the accuracy of the functions of interest.

• When the functions are computed from the solution of a 
coupled system, their accuracy depends both on the accuracy of 
each component and the accuracy of the MDA.
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5. Coupled Derivative Computation

5.1. Finite differences

• To address the latter, the MDA should be converged well 
enough.
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5.2. Complex step and AD

• The complex-step method and forward-mode AD can also be 
used for a coupled system, but some modifications are required. 

• The complex-step method requires all components to be able to 
take complex input and compute the corresponding complex 
outputs.

• Similarly, AD requires inputs and outputs that include 
derivative information.

• For a given MDA, if one of these methods is applied to each 
component and the coupling includes the derivative 
information, we can compute the derivatives of the coupled 
system.

• The propagation of the forward mode seed (or the complex 
step) is illustrated in Figure 7.39 for a system of two 
components.
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5.2. Complex step and AD

• When using AD, manual coupling is required if the components 
and the coupling are programmed in different languages. 

• The complex-step method can be more straightforward to 
implement than AD for cases where the models are 
implemented in different languages, and all the languages 
support complex arithmetic.

Figure 7.39 Forward mode of AD for a 

system of two components.
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Figure 7.40 Reverse mode of AD for a 

system of two components.



125

5. Coupled Derivative Computation

5.2. Complex step and AD

• Although both of these methods produce accurate derivatives 
for each component, the accuracy of the derivatives for the 
coupled system could be compromised by a low level of 
convergence of the MDA.

• The reverse mode of AD for coupled systems would be more 
involved: after an initial MDA, we would run a reverse MDA to 
compute the derivatives, as illustrated in Fig. 7.40.
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5. Coupled Derivative Computation

5.3. Implicit analytic methods

• The implicit analytic methods (both direct and adjoint) can also 
be extended to compute the derivatives of coupled systems.

• All the equations derived for a single component are valid for 
coupled systems if we concatenate the residuals and the state 
variables.

• Furthermore, we can mix explicit and implicit components 
using concepts introduced in the UDE.

• Finally, when using the MAUD approach, the coupled 
derivative computation can be done using the same hierarchy of 
solvers.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

• In Eq. 7.01, we denoted the coupled system as a series of 
concatenated residuals, ri(u)=0, and variables ui corresponding 
to each component i=1,…,n as

where the residual for each component, ri, could depend on all 
states u.

• To derive the coupled version of the direct and adjoint methods, 
we apply them to the concatenated vectors.

(7.15)𝑟 𝑢 ≡
𝑟1 𝑢

⋮
𝑟𝑛 𝑢

, 𝑢 ≡

𝑢1

⋮
𝑢𝑛

,
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

• Thus, the coupled version of the linear system for the direct 
method is

where ∅𝑖 represents the derivatives of the states from component i 
with respect to the design variables.

• Once we have solved for ∅, we can use the coupled equivalent of 
the total derivative equation to compute the derivatives:

(7.16)

𝜕𝑟1

𝜕𝑢1
⋯

𝜕𝑟𝑛

𝜕𝑢1

⋮ ⋱ ⋮
𝜕𝑟𝑛

𝜕𝑢1
⋯

𝜕𝑟𝑛

𝜕𝑢𝑛

∅1

⋮
∅𝑛

=

𝜕𝑟1

𝜕𝑥
⋮

𝜕𝑟𝑛

𝜕𝑥

,

(7.17)
𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝑥
−

𝜕𝑓

𝜕𝑢1
⋯

𝜕𝑓

𝜕𝑢𝑛

∅1

⋮
∅𝑛

.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

• The coupled adjoint equations can be written as

• After solving for the coupled-adjoint vector using the previous 
equation, we can use the total derivative equation to compute 
the desired derivatives:

(7.18)

𝜕𝑟1

𝜕𝑢1

𝑇

⋯
𝜕𝑟𝑛

𝜕𝑢1

𝑇

⋮ ⋱ ⋮

𝜕𝑟𝑛

𝜕𝑢1

𝑇

⋯
𝜕𝑟𝑛

𝜕𝑢𝑛

𝑇

𝜓1

⋮
𝜓𝑛

=

𝜕𝑓

𝜕𝑢1

𝑇

⋮

𝜕𝑓

𝜕𝑢𝑛

𝑇
,

(7.19)
𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝑥
− 𝜓1

𝑇 ⋯ 𝜓𝑛
𝑇

𝜕𝑟1

𝜕𝑥
⋮

𝜕𝑟𝑛

𝜕𝑥

.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

• Like the adjoint method, the coupled adjoint is a powerful 
approach for computing gradients with respect to many design 
variables.

• The required partial derivatives are the derivatives of the 
residuals or outputs of each component with respect to the state 
variables or inputs of all other components.

• In practice, the block structure of these partial derivative 
matrices is sparse, and the matrices themselves are sparse.

• This sparsity can be exploited using graph colouring to 
drastically reduce the computation effort of computing 
Jacobians at the system or component level.

• Figure 7.41 shows the structure of the Jacobians in Eq. 7.16 and 
Eq. 7.18 for the three-group case from Fig. 7.35.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

Figure 7.41 Jacobian structure for residual form of the coupled direct (left) and coupled adjoint (right) 

equations for the three-group system of Fig. 7.25. The structure of the transpose of the Jacobian is the 

same as that of the DSM. S
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

• The sparsity structure of the Jacobian is the transpose of the 
DSM structure.

• Because the Jacobian Eq. 7.18 is transposed, the Jacobian in 
the adjoint equation has the same structure as the DSM.

• The structure of the linear system can be exploited in the same 
way as for the nonlinear system solution using hierarchical 
solvers: serial solvers within each group and a coupled solver 
for the three groups.

• The partial derivatives in the coupled Jacobian, the right-hand 
side of the linear systems (Eqs. 7.16 and 7.18), and the total 
derivatives equations (Eqs. 7.17 and 7.19) can be easily 
computed.

• The nature of these derivatives is the same as that for implicit 
analytic methods.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

• They do not require the solution of the equation and are 
typically cheap to compute.

• Ideally, the components would already have analytic derivatives 
of their outputs with respect to their inputs, which are all the 
derivatives needed at the system level.

• The partial derivatives can also be computed using the finite 
difference or complex-step methods.

• Even though these are not efficient for cases with many inputs, 
it might still be more efficient to compute the partial derivatives 
with these methods and then solve the coupled derivative 
equations instead of performing a finite difference of the 
coupled system, as described in Section 7.4.1.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.1. Coupled derivatives of residual 
representation

• The reason is that computing the partial derivatives only avoids 
having to reconverge the coupled system for every input 
perturbation.

• In addition, the coupled system derivatives should be more 
accurate when finite differences are used only to compute the 
partial derivatives.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.2. Coupled derivatives of functional 
representation

• Variants of the coupled direct and adjoint methods can also be 
derived for the functional form of the system-level 
representation (Eq. 7.03), by using the residuals defined for the 
system-level Newton solver (Eq. 7.10),

• Recall that driving these residuals to zero relies on a solver for 
each component to solve for each component’s states and 
another solver to solve for the coupling variables ො𝑢.

(7.20)Ƹ𝑟𝑖 ො𝑢 = ො𝑢𝑖 − 𝑈𝑖 𝑢𝑗≠𝑖 = 0 𝑖 = 1, ⋯ , 𝑚
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.2. Coupled derivatives of functional 
representation

• Using this new residual definition and the coupling variables, 
we can derive the functional form of the coupled direct method 
as

where the Jacobian is identical to the one we derived for the 
coupled Newton step (Eq. 7.12).

• Here, ෠𝜙𝑖 represents the derivatives of the coupling variables 
from component i with respect to the design variables.

(7.21)

𝐼 −
𝜕𝑈1

𝜕 ො𝑢2

−
𝜕𝑈2

𝜕 ො𝑢1
𝐼

⋯ −
𝜕𝑈1

𝜕 ො𝑢𝑚

⋯ −
𝜕𝑈2

𝜕 ො𝑢𝑚

⋮ ⋮

−
𝜕𝑈𝑚

𝜕 ො𝑢1
−

𝜕𝑈𝑚

𝜕 ො𝑢2

⋱ ⋮
⋯ 𝐼

෠𝜙1

෠𝜙2

⋮
෠𝜙𝑚

=

𝜕 ෡𝑈1

𝜕𝑥
𝜕 ෡𝑈2

𝜕𝑥
⋮

𝜕 ෡𝑈𝑚

𝜕𝑥
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.2. Coupled derivatives of functional 
representation

• The solution can then be used in the following equation to 
compute the total derivatives:

• Similarly, the functional version of the coupled adjoint 
equations can be derived as

(7.22)
𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝑥
−

𝜕𝑓

𝜕 ො𝑢1
⋯

𝜕𝑓

𝜕 ො𝑢𝑚

෠𝜙1

⋮
෠𝜙𝑚

.

(7.23)

𝐼 −
𝜕𝑈1

𝜕 ො𝑢2

𝑇

−
𝜕𝑈2

𝜕 ො𝑢1

𝑇

𝐼

⋯ −
𝜕𝑈1

𝜕 ො𝑢𝑚

𝑇

⋯ −
𝜕𝑈2

𝜕 ො𝑢𝑚

𝑇

⋮ ⋮

−
𝜕𝑈𝑚

𝜕 ො𝑢1

𝑇

−
𝜕𝑈𝑚

𝜕 ො𝑢2

𝑇 ⋱ ⋮
⋯ 𝐼

෠𝜓1

෠𝜓2

⋮
෠𝜓𝑚

=

𝜕𝑓

𝜕 ො𝑢1

𝑇

𝜕𝑓

𝜕 ො𝑢2

𝑇

⋮

𝜕𝑓

𝜕 ො𝑢𝑚

𝑇
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.2. Coupled derivatives of functional 
representation

• After solving for the coupled-adjoint vector using the previous 
equation, we can use the total derivative equation to compute 
the desired derivatives:

• Because the coupling variables (ො𝑢) are usually a reduction of the 
internal state variables (u), the linear systems in Eqs. 7.21 and 
7.23 are usually much smaller than that of the residual 
counterparts (Eqs. 7.16 and 7.18).

(7.24)
𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝑥
− 𝜓1

𝑇 ⋯ 𝜓𝑚
𝑇

𝜕 Ƹ𝑟1

𝜕𝑥
⋮

𝜕 Ƹ𝑟𝑚

𝜕𝑥

.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.2. Coupled derivatives of functional 
representation

• However, unlike the partial derivatives in the residual form, the 
partial derivatives in the functional form Jacobian need to 
account for the solution of the corresponding component. 

• When viewed at the component level, these derivatives are 
actually total derivatives of the component.

• When the component is an implicit set of equations, computing 
these derivatives with finite-differencing would require solving 
the component’s equations for each variable perturbation.

• Alternatively, an implicit analytic method could be applied to 
the component to compute these derivatives.

• Figure 7.42 shows the Jacobian structure in the functional form 
of the coupled direct method (Eq. 7.21) for the case of Fig. 7.38.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.2. Coupled derivatives of functional 
representation

• The dimension of this Jacobian is smaller than that of the 
residual form.

• Recall from Fig. 7.25 that U1 corresponds to r3, U2 corresponds 
to r6, and U3 corresponds to r9.

• Thus, the total size of this Jacobian corresponds to the sum of 
the sizes of components 3, 6, and 9, as opposed to the sum of 
the sizes of all nine components for the residual form.

Figure 7.42 Jacobian of coupled derivatives for the functional 

form of Fig. 7.38.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.2. Coupled derivatives of functional 
representation

• However, as mentioned previously, partial derivatives for the 
functional form are more expensive to compute because they 
need to account for an implicit solver in each of the three 
groups.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

• The coupled direct and adjoint equations derived in this section 
can be obtained from the unified derivatives equation (UDE) 
with the appropriate definitions of residuals and variables.

• The components corresponding to each block in these 
equations can also be implicit or explicit, which provides the 
flexibility to represent systems of heterogeneous components.

• MAUD implements the linear systems from these coupled 
direct and adjoint equations using the UDE.

• The overall linear system inherits the hierarchical structure 
defined for the nonlinear solvers.

• Instead of nonlinear solvers, we use linear solvers, such as a 
direct solver and Krylov (both monolithic) or block Jacobi or 
Gauss–Seidel (both recursive).
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

• Components can be expressed using residual or functional 
forms, making it possible to include black-box solvers in a 
hierarchy.

• Example 7.8 demonstrates the UDE approach to computing 
derivatives by building on the wing design problem presented 
in Ex. 7.4.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives.

• Let us now consider a wing design optimization problem based 
on the aerostructural model considered in Ex. 7.1.

• The design variables are as follows:

: Angle of attack. This controls the amount of lift produced by the 
airplane.

b: Wingspan. This is a shared variable because it directly affects 
both the aerodynamic and structural models.

: Twist distribution along the wingspan, represented by a vector. 
This controls the relative lift loading in the spanwise direction, 
which affects the drag and the load distribution on the structure. It 
affects the aerodynamic model but not the structural model 
(because it is idealized as a beam).
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

t: Thickness distribution of beam along the wingspan, represented 
by a vector. This directly affects the weight and the stiffness. It 
does not affect the aerodynamic model.

• The objective is to minimize the fuel required for a given range 
R, which can be written as a function of drag, lift, and weight, 
as follows:

• The empty weight W only depends on t and b, and the 
dependence is explicit (it does not require solving the 
aerodynamic or structural models).

(7.25)𝑓 = 𝑊 𝑒𝑥𝑝
𝑅𝑐𝐷

𝑉𝐿
− 1 .
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

• The drag D and lift L depend on all variables once we account 
for the coupled system of equations.

• The remaining variables are fixed: R is the required range, V is 
the airplane’s cruise speed, and c is the specific fuel 
consumption of the airplane’s engines.

• We also need to constrain the stresses in the structure, , which 
are an explicit function of the displacements.

• To solve this optimization problem using gradient-based 
optimization, we need the coupled derivatives of f and  with 
respect to , b, , and t.

• Computing the derivatives of the aerodynamic and structural 
models separately is not sufficient.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

• For example, a perturbation on the twist changes the loads, 
which then changes the wing displacements, which requires 
solving the aerodynamic model again.

• Coupled derivatives take this effect into account.

• We show the DSM for the system in Fig. 7.43.

• For brevity, we only discuss the derivatives required to compute 
the derivative of fuel burn with respect to span, but the other 
partial derivatives would follow the same rationale.

– Τ𝜕𝑟 𝜕𝑢 is identical to what we derived when solving the coupled 
aerostructural system in Ex. 7.7.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

Figure 7.43 The DSM of the aerostructural problem shows the structure of the reverse UDE.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

– Τ𝜕𝑟 𝜕𝑥 has two components, which we can obtain by differentiating 
the residuals:

– Τ𝜕𝑓 𝜕𝑥 = Τ𝜕𝑓 𝜕𝑏 = 0 because the fuel burn does not depend directly 
on the span if we just consider Eq. 7.25. However, it does depend 
on the span through, W, D, and L. This is where the UDE 
description is more general and clearer than the standard direct 
and adjoint formulation. By defining the explicit components of 
the function in the bottom-right corner, the solution of the linear 
system yields the chain rule

𝜕

𝜕𝑏
𝐴Γ − 𝑣 =

𝜕𝐴

𝜕𝑏
Γ −

𝜕𝑣

𝜕𝑏
 ,

𝜕

𝜕𝑏
𝐾𝑑 − 𝑞 =

𝜕𝐾

𝜕𝑏
Γ.

𝑑𝑓

𝑑𝑏
=

𝜕𝑓

𝜕𝐷

𝑑𝐷

𝑑𝑏
+

𝜕𝑓

𝜕𝐿

𝑑𝐿

𝑑𝑏
+

𝜕𝑓

𝜕𝑊

𝑑𝑊

𝑑𝑏
,
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

where the partial derivatives can be obtained by differentiating Eq. 7.25 
symbolically, and the total derivatives are part of the coupled linear 
system solution.

• After computing all the partial derivative terms, we solve either 
the forward or reverse UDE system.

• For the derivative with respect to span, neither method has an 
advantage.

• However, for the derivatives of fuel burn with respect to the 
twist and thickness variables, the reverse mode is much more 
efficient.

• In this example, df/db=-11.0kg/m, so each additional meter of 
span reduced the fuel burn by 11 kg.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

• If we compute this same derivative without coupling (by 
converging the aerostructural model but not considering the 
off-diagonal terms in the aerostructural Jacobian), we obtain 
df/db=-17.7kg/m, which is significantly different.

• The derivatives of the fuel burn with respect to the twist 
distribution and the thickness distribution along the wingspan 
are plotted in Fig. 7.44, where we can see the difference 
between coupled and uncoupled derivatives.
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5. Coupled Derivative Computation
5.3. Implicit analytic methods

5.3.3. UDE for coupled systems

Example 7.8: Aerostructural derivatives (c0ntinued).

Figure 7.44 Derivatives of the fuel burn with respect to the 

spanwise distribution of twist and thickness variables. The 

coupled derivatives differ from the uncoupled derivatives, 

especially for the derivatives with respect to structural 

thicknesses near the wing root.

S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1



153

6. MDO Architectures

• So far in this chapter, we have seen the models, solvers and 
derivative computation methods applied to coupled systems.

• We now discuss the options to optimize coupled systems, which 
are given by various MDO architectures.

• An MDO architecture is a combination of the problem 
formulation and the organizational strategy.

• The MDO architecture defines both how the different models 
are coupled and how the overall optimization problem is solved.

• There are several terms in the literature used to describe what 
we mean by “architecture“:

– “method”, “methodology”, “problem formulation”, “strategy”, 
“procedure”, and “algorithm”
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6. MDO Architectures

• Our preference is for the term “architecture", because the 
relationship between problem formulation and solution 
algorithm is not one-to-one.

• For example, replacing a particular disciplinary simulation with 
a surrogate model or reordering the disciplinary simulations do 
not affect the problem formulation but strongly affect the 
solution algorithm.

• Choosing the most appropriate architecture for the problem can 
significantly reduce the solution time.

• These time savings come from:

– the methods chosen to solve each discipline

– the optimization algorithm driving the process

– the coupling scheme used in the architecture

– the degree to which operations are carried out in parallel
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6. MDO Architectures

• The latter consideration becomes especially important as the 
design becomes more detailed and the number of variables 
and/or constraints increases.
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6. MDO Architectures

6.1. Unified description of MDO 
architectures

• To represent the various MDO architectures is convenient to 
use a common strategy to facilitate implementation, 
comparison and benchmarking the various architectures.
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6. MDO Architectures
6.1. Unified description of MDO architectures

6.1.1 Terminology and mathematical 
notation

• Design variable:

– a variable in the MDO problem that is always under the explicit 
control of an optimizer

– Local design variable:

• design variables relevant to a single discipline only —› denoted 
by xi for discipline i

– Shared design variable: 

• design variables used by several disciplines —› denoted by x0  

• Full set of design variables:

(7.26)𝑥 = 𝑥0
𝑇 , 𝑥1

𝑇 , … , 𝑥𝑚
𝑇 .
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6. MDO Architectures
6.1. Unified description of MDO architectures

6.1.1 Terminology and mathematical 
notation

• Think of some examples of local and shared design variables in 
the context of aerostructural optimization.

• Discipline analysis:

– a simulation that models the behaviour of one aspect of a 
multidisciplinary system —› represented by equations 𝑟𝑖 = 0

• State variables:

– set of variables determined by solving a discipline analysis 
—›  denoted by 𝑢𝑖

• Think of some examples of aerodynamic discipline analyses. 
What are the corresponding state variables?
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6. MDO Architectures
6.1. Unified description of MDO architectures

6.1.1 Terminology and mathematical 
notation

• Coupling variables:

– variables determined by one discipline and that influence another 
discipline

– Response variables:

• coupling variables from a specific discipline —› denoted by ො𝑢𝑖 
for discipline i

– Target variables:

• values of the response variables that we need to match —› 

denoted by ො𝑢𝑖
𝑡for discipline i

– Consistency constraints:

• constraints that ensure the response variables match the 
values of the target variables —› for discipline i we have ℎ𝑖

𝑐 =

ො𝑢𝑖
𝑡 − ො𝑢𝑖

• Choose a multidisciplinary problem. Identify the coupling 
variables.
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6. MDO Architectures
6.1. Unified description of MDO architectures

6.1.2 Architecture diagrams

• An explained before, an Extended Design Structure Matrix 
(XDSM) is a convenient and compact way to describe the 
sequence of operations in an MDO architecture.

• The XDSM was developed to simultaneously communicate data 
dependency and process flow between computational 
components of the architecture on a single diagram.

• The XDSM is based on the Design Structure Matrix (DSM) and 
follows its basic rules:

– architecture components are placed on main diagonal of the 
“matrix"

– inputs to a component are placed in the same column

– outputs to a component are placed in the same row

– external inputs and outputs may also be defined and are placed on 
the outer edges of the diagram
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6. MDO Architectures
6.1. Unified description of MDO architectures

6.1.2 Architecture diagrams

• The XDSM is based on the Design Structure Matrix (DSM) and 
follows its basic rules (continued):

– thick grey lines are used to show the data flow between 
components

– a numbering system is used to show the order in which the 
components are executed (the algorithm starts at component zero 
and proceeds in numerical order)

– consecutive components in the algorithm are connected by a thin 
black line

– loops are denoted using the notation 𝑗 → 𝑘 𝑓𝑜𝑟 𝑘 < 𝑗 so that the 
algorithm must return to step 𝑘 until a looping condition is 
satisfied before proceeding
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6. MDO Architectures

6.1. Monolithic MDO architectures

• Monolithic MDO architectures cast the design problem as a 
single optimization.

• The only difference between the different monolithic 
architectures is the set of design variables that the optimizer is 
responsible for, which has repercussions for the set of 
constraints considered and how the governing equations are 
solved.
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6. MDO Architectures
6.1. Monolithic MDO architectures

6.1.1 Multidisciplinary Feasible

• The multidisciplinary design feasible (MDF) architecture is the 
closest to a single-discipline problem because the design 
variables, objective, and constraints are the same as we would 
expect for a single-discipline problem.

• The only difference is that the computation of the objective and 
constraints requires solving a coupled system instead of a single 
system of governing equations.

• Therefore, all the optimization algorithms covered in the 
previous chapters can be applied without modification in MDF. 

• This approach is also called a reduced-space approach because 
the optimizer does not handle the space of the state and 
coupling variables.
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6. MDO Architectures
6.1. Monolithic MDO architectures

6.1.1 Multidisciplinary Feasible

• The resulting optimization problem is as follows:

where * indicates that the variables after ; remain fixed in the 
given contest.

• At each optimization iteration, the optimizer has a 
multidisciplinary feasible point ො𝑢 ∗ found through the MDA. 

• For a design given by the optimizer (x), the MDA finds the 
internal component states (u) and the coupling variables (ො𝑢).

(7.27)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥; ො𝑢 ∗)
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

𝑔(𝑥; ො𝑢 ∗) ≤ 0

Ƹ𝑟 ො𝑢; 𝑥 = 0
ො𝑢
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6. MDO Architectures
6.1. Monolithic MDO architectures

6.1.1 Multidisciplinary Feasible

• To denote the MDA solution, we use the residuals of the 
functional form, where the residuals for component i are

• Each component is assumed to solve for its state variables 𝑢𝑖 
internally.

• The MDA finds the coupling variables by solving the coupled 
system of components 𝑖 = 1, … , 𝑚 using one of the methods 
from Section 7.4.5.

• Then, the objective and constraints can be computed based on 
the current design variables and coupling variables.

• Figure 7.45 shows an XDSM for MDF with three components. 

(7.28)Ƹ𝑟𝑖 ො𝑢, 𝑢𝑖 = ො𝑢𝑖 − 𝑈𝑖 𝑢𝑖, ො𝑢𝑗≠𝑖 = 0.
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6. MDO Architectures
6.1. Monolithic MDO architectures

6.1.1 Multidisciplinary Feasible

Figure 7.45 The MDF architecture relies on an MDA to solve for the coupling and state variables at each 

optimization iteration. In this case, the MDA uses the block Gauss–Seidel method. S
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6. MDO Architectures
6.1. Monolithic MDO architectures

6.1.1 Multidisciplinary Feasible

• Here we use a nonlinear block Gauss–Seidel method (see Alg. 
7.2) to converge the MDA, but any other method from Section 
7.4.5 could be used.

• One advantage of MDF is that the system-level states are 
physically compatible if an optimization stops prematurely. 

• This is advantageous in an engineering design context when 
time is limited, and we are not as concerned with finding an 
optimal design in the strict mathematical sense as we are with 
finding an improved design.

• However, it is not guaranteed that the design constraints are 
satisfied if the optimization is terminated early; that depends 
on whether the optimization algorithm maintains a feasible 
design point or not.
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6. MDO Architectures
6.1. Monolithic MDO architectures

6.1.1 Multidisciplinary Feasible

• The main disadvantage of MDF is that it requires an MDA for 
each optimization iteration, which requires its own algorithm 
outside of the optimization.

• Implementing an MDA algorithm can be time-consuming if one 
is not already in place.

• A MAUD-based framework such as OpenMDAO can facilitate 
this.

• MAUD naturally implements the MDF architecture because it 
focuses on solving the MDA (Section 7.4.5) and on computing 
the derivatives corresponding to the MDA (Section 7.5.3).

• When using a gradient-based optimizer, gradient computations 
are also challenging for MDF because coupled derivatives are 
required.
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6. MDO Architectures
6.1. Monolithic MDO architectures

6.1.1 Multidisciplinary Feasible

• Finite-difference derivative approximations are easy to 
implement, but their poor scalability and accuracy are 
compounded by the MDA, as explained in Section 7.3.

• Ideally, we would use one of the analytic coupled derivative 
computation methods of Section 7.3, which require a 
substantial implementation effort.

• Again, OpenMDAO was developed to facilitate coupled 
derivative computation.
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Example 7.9: Aerostructural optimization using MDF.

• Continuing the wing aerostructural example, we are finally 
ready to optimize the wing. The MDF formulation is as follows:

• The structural stresses are constrained to be less than the yield 
stress of the material by a safety factor (2.5 in this case).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝛼, 𝑏, 𝛾, 𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔

𝑓𝑜𝑟

𝐿 − 𝑊 = 0
2.5 𝜎 − 𝜎𝑦𝑖𝑒𝑙𝑑 ≤ 0

𝐴 𝑑 Γ − 𝑣 𝑑, 𝛼 = 0
𝐾𝑑 − 𝑞 Γ = 0

Γ, 𝑑
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6.1.1 Multidisciplinary Feasible

Example 7.9: Aerostructural optimization using MDF 
(continued).

• In Ex. 7.7, we set up the MDA for the aerostructural problem, 
and in Ex. 7.8, we set up the coupled derivative computations 
needed to solve this problem using gradient-based 
optimization.

• Solving this optimization resulted in the wing shown in Fig. 
7.46, with the twist and thickness distributions shown in Fig. 
7.47.

• The wing twist directly controls the spanwise lift loading.

• The baseline wing had no twist, which resulted in the loading 
shown in Fig. 7.48.
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Example 7.9: Aerostructural optimization using MDF 
(continued).

Figure 7.46 The optimization 

reduces the fuel burn by 

increasing the span. Although 

this increases the structural 

weight, the decrease in drag 

more than compensates for it. S
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Figure 7.47 Twist and 

thickness distributions for the 

baseline and optimized wings.

Figure 7.48 Lift loading for the 

baseline and optimized wings.
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Example 7.9: Aerostructural optimization using MDF 
(continued).

• The loading distributions for the level flight (1 g) and maneuver 
conditions (2.5 g) are indistinguishable.

• The optimization increases the twist in the midspan and 
drastically decreases it toward the tip.

• This twist distribution differentiates the loading at the two 
different conditions: it makes the loading at level flight closer to 
the elliptical ideal while shifting the loading at the maneuver 
condition toward the wing root.

• The thickness distribution also changes significantly, as shown 
in Fig. 7.47.
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Example 7.9: Aerostructural optimization using MDF 
(continued).

• The optimization tailors the thickness by adding more thickness 
in the spar near the root, where the moments are larger, and 
thins out the wing much more toward the tip, where the loads 
decrease. 

• This more radical thickness distribution is enabled by the 
tailoring of the spanwise lift loading discussed previously.

• These trades make sense because, at the level flight condition, 
the optimizer is concerned with minimizing drag, whereas, at 
the maneuver condition, the optimizer just wants to satisfy the 
stress constraint for a given total lift.
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Example 7.10: Aerostructural sequential optimization.

• In Section 7.2, we argued that sequential optimization does not, 
in general, converge to the true optimum for constrained 
problems.

• We now demonstrate this for a modified version of the wing 
aerostructural design optimization problem from Ex. 7.9.

• One major modification was to reduce the problem to two 
design variables to visualize the optimization path: one 
structural variable corresponding to a constant spar thickness 
and one twist variable corresponding to the wing tip twist, 
which controls the slope of a linear twist distribution.
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Example 7.10: Aerostructural sequential optimization 
(continued).

• To perform sequential optimization for the wing design 
problem of Ex. 7.3, we could start by optimizing the 
aerodynamics by solving the following problem:

• Here, W, is constant because the structural thicknesses t are 
fixed, but L is a function of the aerodynamic design variables 
and states.

• We cannot include the span b because it is a shared variable, as 
explained in Section 7.2.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝛼, 𝛾
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐿 − 𝑊 = 0
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Example 7.10: Aerostructural sequential optimization 
(continued).

• Otherwise, this optimization would tend to increase b 
indefinitely to reduce the lift-induced drag.

• Because f is a function of D and L, and L is constant because 
L=W, we could replace the objective with D.

• Once the aerodynamic optimization has converged, the twist 
distribution and the forces are fixed, and we then optimize the 
structure by minimizing weight subject to stress constraints by 
solving the following problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 2.5 𝜎 − 𝜎𝑦𝑖𝑒𝑙𝑑 ≤ 0
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Example 7.10: Aerostructural sequential optimization 
(continued).

• Because the drag and lift are constant, the objective could be 
replaced by W.

• Again, we cannot include the span in this problem because it 
would decrease indefinitely to reduce the weight and internal 
loads due to bending.

• These two optimizations are repeated until convergence.

• We compare the paths of this optimization and an optimization 
of the same two variables but performing MDO using the MDF 
architecture from Ex. 7.9.
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Example 7.10: Aerostructural 
sequential optimization 
(continued).

• As shown in Fig. 7.49, 
sequential optimization only 
changes one variable at a 
time, and it converges to a 
point on the constraint with 
about 3.5º more twist than 
the true optimum of the 
MDO. 

• When including more 
variables, these differences 
are likely to be even larger.
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Figure 7.49 Sequential optimization gets stuck 

at the stress constraint, whereas simultaneous 

optimization of the aerodynamic and structural 

variable finds the true multidisciplinary 

optimum.
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6.1.2 Individual Discipline Feasible

• The individual discipline feasible (IDF) architecture adds 
independent copies of the coupling variables to allow 
component solvers to run independently and possibly in 
parallel.

• These copies are known as target variables and are controlled 
by the optimizer, whereas the actual coupling variables are 
computed by the corresponding component.

• Target variables are denoted by a superscript t, so the coupling 

variables produced by discipline i are denoted as ො𝑢𝑖
𝑡.

• These variables represent the current guesses for the coupling 
variables that are independent of the corresponding actual 
coupling variables computed by each component.
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• To ensure the eventual consistency between the target coupling 
variables and the actual coupling variables at the optimum, we 

define a set of consistency constraints, ℎ𝑖
𝑐 = ො𝑢𝑖

𝑡 − ො𝑢𝑖, which we 

add to the optimization problem formulation.

• The optimization problem for the IDF architecture is

• Each component i is solved independently to compute the 
corresponding output coupling variables ො𝑢𝑖, where the inputs 

ො𝑢𝑗≠𝑖
𝑡  are given by the optimizer.

(7.29)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥; ො𝑢)

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥, ො𝑢𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

𝑔(𝑥; ො𝑢) ≤ 0

ℎ𝑖
𝑐 = ො𝑢𝑖

𝑡 − ො𝑢𝑖 = 0

𝑟𝑖 ො𝑢𝑖; 𝑥, ො𝑢𝑗≠𝑖
𝑡 = 0

ො𝑢

𝑖 = 1, … , 𝑚
𝑖 = 1, … , 𝑚
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• Thus, each component drives its residuals to zero to compute

• The consistency constraint quantifies the difference between 
the target coupling variables guessed by the optimizer and the 
actual coupling variables computed by the components.

• The optimizer iterates the target coupling variables 
simultaneously with the design variables to find a 
multidisciplinary feasible point that is also an optimum.

• At each iteration, the objective and constraints are computed 
using the latest available coupling variables computed by each 
component.

• Figure 7.50 shows the XDSM for IDF.

(7.30)ො𝑢𝑖 = 𝑈𝑖 𝑥, ො𝑢𝑗≠𝑖
𝑡 .
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Figure 7.50 The IDF architecture breaks up the MDA by letting the optimizer solve for the coupling 

variables that satisfy interdisciplinary feasibility. S
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• One advantage of IDF is that each component can be solved in 
parallel because they do not depend on each other directly. 

• Another advantage of IDF is that if a gradient-based 
optimization algorithm is used to solve the optimization 
problem, the optimizer is typically more robust and has a better 
convergence rate than the fixed-point iteration algorithms of 
Section 7.4.5.

• The main disadvantage of IDF is that the optimizer must 
handle more variables and constraints compared with the MDF 
architecture.

• If the number of coupling variables is large, the size of the 
resulting optimization problem may be too large to solve 
efficiently.
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• This problem can be mitigated by careful selection of the 
components or by aggregating the coupling variables to reduce 
their dimensionality.

• Unlike MDF, IDF does not guarantee a multidisciplinary 
feasible state if the optimization stops prematurely. 

• Multidisciplinary feasibility is only guaranteed at the end of the 
optimization through the satisfaction of the consistency 
constraints.
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Example 7.11: Aerostructural optimization using IDF.

• For the IDF architecture, we need to make copies of the 
coupling variables (Γ𝑡 and 𝑑𝑡) and add the corresponding 
consistency constraints, as highlighted in the following problem 
statement

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝛼, 𝑏, 𝛾, 𝑡, Γ𝑡, 𝑑𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔

𝑓𝑜𝑟

𝐿 − 𝑊 = 0
2.5 𝜎 − 𝜎𝑦𝑖𝑒𝑙𝑑 ≤ 0

Γ𝑡 − Γ = 0
𝑑𝑡 − 𝑑 = 0

𝐴 𝑑𝑡 Γ − 𝑣 𝑑𝑡, 𝛼 = 0

𝐾𝑑 − 𝑞 Γ𝑡 = 0
Γ, 𝑑
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Example 7.11: Aerostructural optimization using IDF 
(continued).

• The aerodynamic and structural models are solved 
independently.

• The aerodynamic solver finds Γ for the 𝑑𝑡 given by the 
optimizer, and the structural solver finds 𝑑 for the given Γ𝑡.

• When using gradient-based optimization, we do not require 
coupled derivatives, but we do need the derivatives of each 
model with respect to both state variables.

• The derivatives of the consistency constraints are just a unit 
matrix when taken with respect to the variable copies and zero 
otherwise.
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6.1.3 Simultaneous Analysis and Design

• Simultaneous analysis and design (SAND) extends the idea of 
IDF by moving not only the coupling variables to the 
optimization problem but also all component states.

• The SAND architecture requires exposing all the components in 
the form of the system-level view previously introduced in Fig. 
7.25.

• The residuals of the analysis become constraints that the 
optimizer is responsible for.

• This means that component solvers are no longer needed, and 
the optimizer becomes responsible for simultaneously solving 
the components for their states, the interdisciplinary 
compatibility for the coupling variables, and the design 
optimization problem for the design variables.
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• All that is required from the model is the computation of 
residuals.

• Because the optimizer is controlling all these variables, SAND is 
also known as a full-space approach.

• SAND can be stated as follows:

• Here, we use the representation shown in Fig. 7.23, so there are 
two sets of explicit functions that convert the input coupling 
variables of the component.

• The SAND architecture is also applicable to single components, 
in which case there are no coupling variables.

(7.31)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, ො𝑢, 𝑢)
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥, ො𝑢, 𝑢

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥, ො𝑢) ≤ 0

𝑟 𝑥, ො𝑢, 𝑢 = 0
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• The XDSM for SAND is shown in Fig. 7.51.

• Because it solves for all variables simultaneously, the SAND 
architecture can be the most efficient way to get to the optimal 
solution.

• In practice, however, it is unlikely that this is advantageous 
when efficient component solvers are available.

• The resulting optimization problem is the largest of all MDO 
architectures and requires an optimizer that scales well with the 
number of variables.

• Therefore, a gradient-based optimization algorithm is likely 
required, in which case the derivative computation must also be 
considered.
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Figure 7.51 The SAND architecture lets the optimizer solve for all variables (design, coupling, and state 
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• Fortunately, SAND does not require derivatives of the coupled 
system or even total derivatives that account for the component 
solution; only partial derivatives of residuals are needed.

• SAND is an intrusive approach because it requires access to 
residuals.

• These might not be available if components are provided as 
black boxes.

• Rather than computing coupling variables ො𝑢𝑖  and state variables 
𝑢𝑖 by converging the residuals to zero, each component i just 
computes the current residuals 𝑟𝑖 for the current values of the 
coupling variables ො𝑢 and the component states 𝑢𝑖.
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Example 7.12: Aerostructural optimization using SAND.

• For the SAND approach, we do away completely with the 
solvers and let the optimizer find the states. The resulting 
problem is as follows:

• Instead of being solved separately, the models are now solved 
by the optimizer.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝛼, 𝑏, 𝛾, 𝑡, Γ, 𝑑

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐿 − 𝑊 = 0
2.5 𝜎 − 𝜎𝑦𝑖𝑒𝑙𝑑 ≤ 0

𝐴Γ − 𝑣 = 0
𝐾𝑑 − 𝑞 = 0
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Example 7.12: Aerostructural optimization using SAND 
(continued).

• When using gradient-based optimization, the required 
derivatives are just partial derivatives of the residuals (the same 
partial derivatives we would use for an implicit analytic 
method).
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• The monolithic MDO architectures we have covered so far form 
and solve a single optimization problem.

• Distributed architectures decompose this single optimization 
problem into a set of smaller optimization problems, or 
disciplinary subproblems, which are then coordinated by a 
system-level subproblem.

• One key requirement for these architectures is that they must 
be mathematically equivalent to the original monolithic 
problem to converge to the same solution.

• There are two primary motivations for distributed 
architectures.

• The first one is the possibility of decomposing the problem to 
reduce the computational time.
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• The second motivation is to mimic the structure of large 
engineering design teams, where disciplinary groups have the 
autonomy to design their subsystems so that MDO is more 
readily adopted in industry.

• Overall, distributed MDO architectures have fallen short on 
both of these expectations.

• Unless a problem has a special structure, there is no distributed 
architecture that converges as rapidly as a monolithic one.

• In practice, distributed architectures have not been used much 
recently.

• There are two main types of distributed architectures:

– those that enforce multidisciplinary feasibility via an MDA 
somewhere in the process 

– those that enforce multidisciplinary feasibility in some other way 
(using constraints or penalties at the system level)
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• This is analogous to MDF and IDF, respectively, so we name 
these types distributed MDF and distributed IDF.

• In MDO problems, it can be helpful to distinguish between 
design variables that affect only one component directly (called 
local design variables) and design variables that affect two or 
more components directly (called shared design variables).

• We denote the vector of design variables local to component i 
by 𝑥𝑖 and the shared variables by 𝑥0.

• The full vector of design variables is given by concatenating the 
shared and local design variables into a single vector 𝑥 =
𝑥0

𝑇 , 𝑥1
𝑇 , … , 𝑥𝑚

𝑇 , where m is the number of components.

• If a constraint can be computed using a single component and 
satisfied by varying only the local design variables for that 
component, it is a local constraint; otherwise, it is nonlocal. 
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• Similarly, for the design variables, we concatenate the 

constraints as 𝑔 = 𝑔0
𝑇 , 𝑔1

𝑇 , … , 𝑔𝑚
𝑇 .

• The same distinction could be applied to the objective function, 
but we do not usually do this.

• The MDO problem representation we use here is shown in Fig. 
7.52 for a general three-component system.

• We use the functional form introduced in Section 7.4.3, where 
the states in each component are hidden, and we just see its 
output as a coupling variable at the system level.

• The set of constraints is also split into shared constraints and 
local ones.

• Local constraints are computed by the corresponding 
component and depend only on the variables available in that 
component.
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• Shared constraints depend on more than one set of coupling 
variables.

• These dependencies are also shown in Fig. 7.52.

Figure 7.52 MDO 

problem nomenclature 

and dependencies.
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6.2.1 Collaborative Optimization

• The collaborative optimization (CO) architecture is inspired by 
how disciplinary teams work to design complex engineered 
systems.

• This is a distributed IDF architecture, where the disciplinary 
optimization problems are formulated to be independent of 
each other by using target values of the coupling and shared 
design variables.

• These target values are then shared with all disciplines during 
every iteration of the solution procedure.

• The complete independence of disciplinary subproblems 
combined with the simplicity of the data-sharing protocol 
makes this architecture attractive for problems with a small 
amount of shared data.
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• The system-level subproblem modifies the original problem as 
follows: 

1. local constraints are removed

2. target coupling variables, ො𝑢𝑡, are added as design variables

3. a consistency constraint is added

• This optimization problem can be written as follows:

(7.32)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥0, 𝑥1
𝑡 , … , 𝑥𝑚

𝑡 , ො𝑢𝑡

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥0, 𝑥1
𝑡 , … , 𝑥𝑚

𝑡 , ො𝑢𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑔0(𝑥0, 𝑥1

𝑡 , … , 𝑥𝑚
𝑡 , ො𝑢𝑡) ≤ 0

𝐽𝑖
∗ = 𝑥0𝑖

𝑡 − 𝑥0 2

2
+ 𝑥𝑖

𝑡 − 𝑥𝑖
2

+ ො𝑢𝑖
𝑡 − ො𝑢𝑖 𝑥0𝑖

𝑡 , 𝑥𝑖 , ො𝑢𝑗≠𝑖
𝑡 2 𝑖 = 1, … , 𝑚
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where 𝑥0𝑖
𝑡  are copies of the shared design variables that are passed 

to discipline i, and 𝑥𝑖
𝑡 are copies of the local design variables 

passed to the system subproblem.

• The constraint function 𝐽𝑖
∗ is a measure of the inconsistency 

between the values requested by the system-level subproblem 
and the results from the discipline i subproblem.

• The XDSM for CO is shown in Fig. 7.53.

• For each system-level iteration, the disciplinary subproblems 
do not include the original objective function.

• Instead, the objective of each subproblem is to minimize the 
inconsistency function.
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Figure 7.53 Diagram for the CO architecture.
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• For each discipline i, the subproblem is as follows:

• These subproblems are independent of each other and can be 
solved in parallel.

• Thus, the system-level subproblem is responsible for 
minimizing the design objective, whereas the discipline 
subproblems minimize system inconsistency while satisfying 
local constraints.

• The CO procedure is detailed in Alg. 7.5.

(7.33)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽𝑖 𝑥0𝑖
𝑡 , 𝑥𝑖; ො𝑢𝑖

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥0𝑖
𝑡 , 𝑥𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔

𝑓𝑜𝑟

𝑔𝑖(𝑥0𝑖
𝑡 , 𝑥𝑖; ො𝑢𝑖 ) ≤ 0

Ƹ𝑟 ො𝑢𝑖; 𝑥0𝑖
𝑡 , 𝑥𝑖 , ො𝑢𝑗≠𝑖

𝑡 = 0

ො𝑢𝑖
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Algorithm 7.5: Collaborative optimization
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• There are two versions of the CO architecture: CO1 and CO2.

• The version presented in Section 7.6.2.1 is CO2.

• Despite the organizational advantage of having entirely 
separate disciplinary subproblems, CO suffers from numerical 
ill-conditioning.

• This is because the constraint gradients of the system problem 
at an optimal solution are all zero vectors, which violates the 
constraint qualification requirement for the Karush–Kuhn–
Tucker (KKT) conditions.

• This slows down convergence when using a gradient-based 
optimization algorithm or prevents convergence altogether.
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Example 7.13: Aerostructural optimization using CO.

• To apply CO to the wing aerostructural design optimization 
problem (Ex. 7.3), we need to set up a system-level optimization 
problem and two discipline-level optimization subproblems. 

• The system-level optimization problem is formulated as 
follows:

where 𝜀 is a specified convergence tolerance.

• The set of variables that are copied as targets includes the 
shared design variable (𝑏) and the coupling variables (Γ and 𝑑).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑏𝑡, Γ𝑡, 𝑑𝑡 , 𝑊𝑡

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐽1
∗ ≤ 𝜀

𝐽2
∗ ≤ 𝜀
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Example 7.13: Aerostructural optimization using CO 
(continued).

• The aerodynamics subproblem is as follows:

• In this problem, the aerodynamic optimization minimizes the 
discrepancy between the span requested by the system-level 
optimization (𝑏𝑡 ) and the span that aerodynamics is optimizing 
(𝑏). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽1 ≡ 1 −
𝑏

𝑏𝑡

2

+ ෍

𝑖=1

𝑛Γ

1 −
Γ𝑖

Γ𝑖
𝑡

2

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑏, 𝛼, 𝛾
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

𝐿 − 𝑊𝑡 = 0
𝐴Γ − 𝛾 = 0

Γ
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Example 7.13: Aerostructural optimization using CO 
(continued).

• The same applies to the coupling variables Γ.

• The aerodynamics is fully responsible for optimizing 𝛼 and 𝛾.

• The structures subproblem is as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽2 ≡ 1 −
𝑏

𝑏𝑡

2

+ ෍

𝑖=1

𝑛𝑑

1 −
𝑑𝑖

𝑑𝑖
𝑡

2

+ 1 −
𝑊

𝑊𝑡

2

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑏, 𝑡
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

2.5 𝜎 − 𝜎𝑦𝑖𝑒𝑙𝑑 ≤ 0

𝐾𝑑 − 𝑞 = 0
𝑑
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Example 7.13: Aerostructural optimization using CO 
(continued).

• Here, the structural optimization minimizes the discrepancy 
between the span wanted by the structures (a decrease) versus 
what the system level requests (which takes into account the 
opposite trend from aerodynamics).

• The structural subproblem is fully responsible for satisfying the 
stress constraints by changing the structural sizing t, which are 
local variables.
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Example 7.14: Mission-Based optimization for a telescopic wing 
UAV design using ECO.

• See paper: Albuquerque, P., Gamboa, P., and Silvestre, M., 
"Mission-Based Multidisciplinary Aircraft Design Optimization 
Methodology Tailored for Adaptive Technologies", Journal of 
Aircraft, Vol. 55, No. 2, March 2018, pp. 755-770 (DOI: 
10.2514/1.C034403).

• Design a UAV with a telescopic wing considering that the 
disciplines here are the flight phases (take-off, climb, cruise, 
loiter, descent).

• MDO architecture used is Enhanced Collaborative Optimization 
(ECO).

• Figure 7.54 shows the optimization concept.
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Example 7.14: Mission-Based optimization for a telescopic wing 
UAV design using ECO (continued).

Figure 7.54 Optimization concept for Ex. 7.14.
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• Analytical target cascading (ATC) is a distributed IDF 
architecture that uses penalties in the objective function to 
minimize the difference between the target variables requested 
by the system-level optimization and the actual variables 
computed by each discipline.

• The idea of ATC is similar to the CO architecture in the previous 
section, except that ATC uses penalties instead of a constraint

• The ATC system-level problem is as follows:

(7.34)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓0 𝑥, ො𝑢𝑡 + ෍

𝑖=1

𝑚

Φ𝑖 𝑥0𝑖
𝑡 − 𝑥0, ො𝑢𝑖

𝑡 − ො𝑢𝑖 𝑥0, 𝑥𝑖 , ො𝑢𝑡

+Φ0 𝑔0 𝑥, ො𝑢𝑡

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥0, ො𝑢𝑡
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where Φ0 is a penalty relaxation of the shared design constraints, 
and Φ𝑖 is a penalty relaxation of the discipline i consistency 
constraints.

• The ith discipline subproblem is as follows:

(7.35)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓0 𝑥0𝑖
𝑡 , 𝑥𝑖; ො𝑢𝑖 , ො𝑢𝑗≠𝑖

𝑡 + 𝑓𝑖 𝑥0𝑖
𝑡 , 𝑥𝑖; ො𝑢𝑖

+Φ𝑖 ො𝑢𝑖
𝑡 − ො𝑢𝑖 , 𝑥0𝑖

𝑡 − 𝑥0 

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

+Φ0 𝑔0 𝑥0𝑖
𝑡 , 𝑥𝑖; ො𝑢𝑖 , ො𝑢𝑗≠𝑖

𝑡

𝑥0𝑖
𝑡 , 𝑥𝑖

𝑔0 𝑥0𝑖
𝑡 , 𝑥𝑖; ො𝑢𝑖 ≤ 0

𝑟𝑖 ො𝑢𝑖; 𝑥0𝑖
𝑡 , 𝑥𝑖 , ො𝑢𝑗≠𝑖

𝑡 = 0

ො𝑢𝑖
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• Although the most common penalty functions in ATC are 
quadratic penalty functions, other penalty functions are 
possible.

• As mentioned in Chapter 5, penalty methods require a good 
selection of the penalty weight values to converge quickly and 
accurately enough.

• Figure 7.54 shows the ATC architecture XDSM, where  
denotes the penalty function weights used in the determination 
of Φ0 and Φ𝑖.

• The details of ATC are described in Alg. 7.6.
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Figure 7.54 Diagram for the ATC architecture. S
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Algorithm 7.6: Analytical target cascading
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6.2.3 Bilevel Integrated System 
Synthesis

• Bilevel integrated system synthesis (BLISS) uses a series of 
linear approximations to the original design problem, with 
bounds on the design variable steps to prevent the design point 
from moving so far away that the approximations are too 
inaccurate.

• These approximations are constructed at each iteration using 
coupled derivatives (see Section 7.5).
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• The system-level subproblem is formulated as follows:

(7.36)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓0
∗

0 +
𝑑𝑓0

∗

𝑑𝑥0
∆𝑥0

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 ∆𝑥0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑔0

∗
0 +

𝑑𝑔0
∗

𝑑𝑥0
∆𝑥0≤ 0

𝑔𝑖
∗

0 +
𝑑𝑔𝑖

∗

𝑑𝑥0
∆𝑥0≤ 0

∆𝑥0≤ ∆𝑥0 ≤ ∆𝑥0

𝑖 = 1, … , 𝑚
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• The discipline i subproblem is given by the following:

• The extra set of constraints in both system-level and discipline 
subproblems denotes the design variable bounds.

• To prevent violation of the disciplinary constraints by changes 
in the shared design variables, post-optimality derivatives are 
required to solve the system-level subproblem. 

(7.37)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓0 0 +
𝑑𝑓0

∗

𝑑𝑥𝑖
∆𝑥𝑖

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 ∆𝑥𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑔0 0 +

𝑑𝑔0
∗

𝑑𝑥𝑖
∆𝑥𝑖≤ 0

𝑔𝑖 0 +
𝑑𝑔𝑖

∗

𝑑𝑥𝑖
∆𝑥𝑖≤ 0

∆𝑥𝑖≤ ∆𝑥𝑖≤ ∆𝑥𝑖
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• In this case, the post-optimality derivatives quantify the change 
in the optimized disciplinary constraints with respect to a 
change in the system design variables, which can be estimated 
with the Lagrange multipliers of the active constraints.

• Figure 7.55 shows the XDSM for BLISS, and the corresponding 
steps are listed in Alg. 7.7.

• Because BLISS uses an MDA, it is a distributed MDF 
architecture.

• As a result of the linear nature of the optimization problems, 
repeated interrogation of the objective and constraint functions 
is not necessary once we have the gradients.

• If the underlying problem is highly nonlinear, the algorithm 
may converge slowly.
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• The variable bounds may help the convergence if these bounds 
are properly chosen, such as through a trust-region framework.
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Figure 7.55 Diagram for the BLISS architecture. S
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Algorithm 7.7: Bilevel integrated system synthesis
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• Asymmetric subspace optimization (ASO) is a distributed MDF 
architecture motivated by cases where there is a large 
discrepancy between the cost of the disciplinary solvers.

• The cheaper disciplinary analyses are replaced by disciplinary 
design optimizations inside the overall MDA to reduce the 
number of more expensive disciplinary analyses.

• The system-level optimization subproblem is as follows:

(7.38)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥; ො𝑢

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥0, 𝑥𝑘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

𝑔0 𝑥; ො𝑢 ≤ 0

𝑔𝑘 𝑥; ො𝑢𝑘 ≤ 0

𝑟𝑘 ො𝑢𝑘; 𝑥𝑘 , ො𝑢𝑗≠𝑖
𝑡 = 0

ො𝑢𝑘

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘
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where subscript k denotes disciplinary information that remains 
outside of the MDA.

• The disciplinary optimization subproblem for discipline i, 
which is resolved inside the MDA, is as follows:

• Figure 7.56 shows a three-discipline case where the third 
discipline is replaced with a design optimization.

• The corresponding sequence of operations in ASO is listed in 
Alg. 7.8.

(7.39)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥; ො𝑢

𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑥𝑖  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔

𝑓𝑜𝑟

𝑔𝑖 𝑥0, 𝑥𝑖; ො𝑢𝑖 ≤ 0

𝑟𝑖 ො𝑢𝑖; 𝑥𝑖 , ො𝑢𝑗≠𝑖
𝑡 = 0

ො𝑢𝑖
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Figure 7.56 Diagram for the ASO architecture. S
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Algorithm 7.8: Asymmetric Subspace Optimization
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• To solve the system-level problem with a gradient-based 
optimizer, we require post-optimality derivatives of objective 
and constraints with respect to the subproblem inputs.

• For a gradient-based system-level optimizer, the gradients of 
the objective and constraints must take into account the 
suboptimization.

• This requires coupled post-optimality derivative computation, 
which increases computational and implementation time costs 
compared with a normal coupled derivative computation.

• The total optimization cost is only competitive with MDF if the 
discrepancy between each disciplinary solver is high enough.
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Example 7.15: Aerostructural optimization using ASO.

• Aerostructural optimization is an excellent example of 
asymmetry in the cost of the models.

• When the aerodynamics is modeled with computational fluid 
dynamics, it is usually much more expensive than a finite-
element structural model.

• Assuming that structure is the less costly, we formulate the 
system-level optimization problem as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑏, 𝛾
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

𝐿 − 𝑊∗ = 0
𝐴(𝑑∗)Γ − 𝛾(𝑑∗) = 0

Γ
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Example 7.15: Aerostructural optimization using ASO 
(continued).

where 𝑊∗ and 𝑑∗ correspond to values obtained from the 
structural suboptimization,

• Similar to the sequential optimization, we could replace f with 
W in the suboptimization because the other parameters in f are 
fixed.

• To solve the system-level problem with a gradient-based 
optimizer, we would need post-optimality derivatives of 𝑊∗ 
with respect to b and Γ.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑏𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑡
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
𝑓𝑜𝑟

2.5 𝜎 − 𝜎𝑦𝑖𝑒𝑙𝑑 ≤ 0

𝐾𝑑 − 𝑞 = 0
𝑑
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6.2.4 Asymmetric Subspace 
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Example 7.15: Aerostructural optimization using ASO 
(continued).

• To solve the system-level problem with a gradient-based 
optimizer, we would need post-optimality derivatives of 𝑊∗ 
with respect to b and Γ.



233

6. MDO Architectures
6.2. Distributed MDO architectures

6.2.5 Other Distributed Architectures

• There are other distributed MDF architectures in addition to 
BLISS and ASO: concurrent subspace optimization (CSSO) and 
MDO of independent subspaces (MDOIS).

• CSSO requires surrogate models for the analyses for all 
disciplines.

• The system-level optimization subproblem is solved based on 
the surrogate models and is therefore fast.

• The discipline-level optimization subproblem uses the actual 
analysis from the corresponding discipline and surrogate 
models for all other disciplines.

• The solutions for each discipline subproblem are used to update 
the surrogate models.
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6.2.5 Other Distributed Architectures

• MDOIS only applies when no shared variables exist.

• In this case, discipline subproblems are solved independently, 
assuming fixed coupling variables, and then an MDA is 
performed to update the coupling.

• There are also other distributed IDF architectures.

• Some of these are similar to CO in that they use a multilevel 
approach to enforce multidisciplinary feasibility: BLISS-2000 
and quasi-separable decomposition (QSD).

• Other architectures enforce multidisciplinary feasibility with 
penalties, like ATC: inexact penalty decomposition (IPD), exact 
penalty decomposition (EPD), and enhanced collaborative 
optimization (ECO).
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• BLISS-2000 is a variation of BLISS that uses surrogate models 
to represent the coupling variables for all disciplines.

• Each discipline subproblem minimizes the linearized objective 
with respect to local variables subject to local constraints.

• The system-level subproblem minimizes the objective with 
respect to the shared variables and coupling variables while 
enforcing consistency constraints.

• When using QSD, the objective and constraint functions are 
assumed to depend only on the shared design variables and 
coupling variables.

• Each discipline is assigned a “budget” for a local objective, and 
the discipline problems maximize the margin in their local 
constraints and the budgeted objective.
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6.2. Distributed MDO architectures

6.2.5 Other Distributed Architectures

• The system-level subproblem minimizes the objective and 
budgets of each discipline while enforcing the shared 
constraints and a positive margin for each discipline.

• IPD and EPD apply to MDO problems with no shared 
objectives or constraints.

• They are similar to ATC in that copies of the shared variables 
are used for every discipline subproblem, and the consistency 
constraints are relaxed with a penalty function.

• Unlike ATC, however, the more straightforward structure of the 
discipline subproblems is exploited to compute post-optimality 
derivatives to guide the system-level optimization subproblem.
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6. MDO Architectures
6.2. Distributed MDO architectures

6.2.5 Other Distributed Architectures

• Like CO, ECO uses copies of the shared variables.

• The discipline subproblems minimize quadratic 
approximations of the objective while enforcing local 
constraints and linear models of the nonlocal constraints.

• The system-level subproblem minimizes the total violation of 
all consistency constraints with respect to the shared variables.
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6.2. Distributed MDO architectures

6.2.6 Summary

• Figure 7.57 summarizes the MDO architecture classification.

Figure 7.57 Classification of MDO architectures. S
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7. Solvers’ Fidelity

• Definition of Fidelity in Engineering Solvers:

– Fidelity refers to the level of detail, accuracy, and realism in the 
simulation of physical systems.

• Importance of Fidelity:

– Influences the reliability of results.

– Affects computational cost and resource usage.

• Different levels of fidelity serve unique purposes in engineering.

• Balancing accuracy and computational cost is crucial.

• Selecting the right solver depends on the project phase and 
requirements.

• Emerging technologies are expanding the capabilities of 
engineering solvers.
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7. Solvers’ Fidelity

7.1 Levels of fidelity

• Low-Fidelity Solvers:

– Simplified models with minimal computational cost.

– Examples: Empirical correlations, lumped parameter models.

– Applications: Early-stage design, quick feasibility studies.

• Medium-Fidelity Solvers:

– More detailed models with moderate computational demand.

– Examples: Finite difference methods, reduced-order models.

– Applications: Trade-off studies, prototyping.

• High-Fidelity Solvers:

– Comprehensive and highly detailed simulations.

– Examples: Computational Fluid Dynamics (CFD), Finite Element 
Analysis (FEA).

– Applications: Final design validation, safety-critical systems.
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7. Solvers’ Fidelity

7.2 Characteristics of low-fidelity 
solvers

• Advantages:

– Quick to implement and run.

– Requires less computational power.

– Useful for large parameter sweeps.

• Disadvantages:

– Limited accuracy.

– May oversimplify complex phenomena.

• Example Applications:

– Initial sizing of components.

– Rough performance estimates.
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7. Solvers’ Fidelity

7.3 Characteristics of medium-fidelity 
solvers

• Advantages:

– Balanced trade-off between accuracy and computational cost.

– Provides more insights than low-fidelity models.

• Disadvantages:

– Requires more detailed input data.

– Moderate computational demand.

• Example Applications:

– Iterative design optimization.

– Sensitivity analyses.
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7. Solvers’ Fidelity

7.4 Characteristics of high-fidelity 
solvers

• Advantages:

– High accuracy and detailed results.

– Captures complex interactions and phenomena.

• Disadvantages:

– Computationally expensive.

– Requires significant expertise and time.

• Example Applications:

– Aerodynamic simulation of aircraft.

– Stress analysis in critical structures.
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7. Solvers’ Fidelity

7.5 Trade-offs in solver selection

• Factors to Consider:

– Accuracy vs. computational cost.

– Time constraints and project scope.

– Availability of computational resources.

– Phase of the engineering process.

• Decision Framework:

– Use low-fidelity solvers for early-stage design.

– Transition to medium and high-fidelity solvers as the design 
matures.
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7. Solvers’ Fidelity

7.6 Case study: Aerospace Engineering

• Low-Fidelity Example:

– Lift and drag estimation using empirical formulas.

• Medium-Fidelity Example:

– Panel methods for aerodynamic analysis.

• High-Fidelity Example:

– CFD simulations for turbulent flow analysis.

• Outcome:

– Combining levels of fidelity ensures efficient and accurate design 
processes.
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7. Solvers’ Fidelity

7.7 Emerging trends

• Hybrid Fidelity Approaches:

– Combining low, medium, and high-fidelity models for efficiency.

• Machine Learning Integration:

– Enhancing solver speed and adaptability.

• Cloud Computing:

– Enabling access to high-performance computing for high-fidelity 
solvers.
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8. Decision Support
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