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0. Topics

• Surrogate-based optimization

• When to use a surrogate model

• Sampling methods

• Surrogate models
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1. Introduction

• A surrogate model, also known as a response surface model or 
metamodel, is an approximate model of a functional output 
that represents a “curve fit” to some underlying data.

• The goal of a surrogate model is to build a model that is much 
faster to compute than the original function, but that still 
retains sufficient accuracy away from known data points.
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2. Surrogate-Based 
Optimization

• Surrogate-based optimization (SBO) performs optimization 
using the surrogate model, as shown in Fig. 6.01.

• When used in optimization, the surrogate might define the full 
optimization model (i.e., the inputs are design variables, and 
the outputs are objective and constraint functions), or the 
surrogate could be just a component of the overall model.

• SBO is more targeted than the broader field of surrogate 
modelling.

• Instead of aiming for a globally accurate surrogate, SBO just 
needs the surrogate model to be accurate enough to lead the 
optimizer to the true optimum.
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2. Surrogate-Based 
Optimization

• In SBO, the surrogate model is usually improved during 
optimization as needed but can sometimes be constructed 
beforehand and remain fixed during optimization.

• Some optimization algorithms interrogate both the surrogate 
model and the original model, an approach that is sometimes 
called surrogate-assisted optimization.

Figure 6.01 Surrogate-based optimization replaces the original 

model with a surrogate model in the optimization process.
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3. When to use a Surrogate 
Model

• There are various scenarios for which surrogate models are 
helpful.

• One scenario is when the original model is computationally 
expensive.

• Surrogate models can be queried with minimal computational 
cost, but constructing them requires multiple evaluations of the 
original model.

• Suppose the number of evaluations needed to build a 
sufficiently accurate surrogate model is less than that needed to 
optimize the original model directly.

• In that case, SBO may be a worthwhile option.

• Constructing a surrogate model becomes even more compelling 
when it is reused in multiple optimizations.
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3. When to use a Surrogate 
Model

• Surrogate modelling can be effective in handling noisy models 
because they create a smooth representation of noisy data.

• This can be particularly advantageous when using gradient-
based optimization.

• One scenario that leads to both expensive evaluation and noisy 
output is experimental data.

• When the model data are experimental and the optimizer 
cannot query the experiment in an automated way, we can 
construct a surrogate model based on the experimental data.

• Then, the optimizer can query the surrogate model in the 
optimization.

• Surrogate models are also helpful when we want to understand 
the design space, that is, how the objective and constraints 
(outputs) vary with respect to the design variables (inputs).
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3. When to use a Surrogate 
Model

• By constructing a continuous model over discrete data, we 
obtain functional relationships that can be visualized more 
effectively.

• When multiple sources of data are available, surrogate models 
can fuse the data to build a single model.

• The data could come from numerical models with different 
levels of fidelity or experimental data.

• For example, surrogate models can calibrate numerical model 
data using experimental data.

• This is helpful because experimental data is usually much more 
scarce than numerical data.

• The same reasoning applies to low- versus high-fidelity 
numerical data.
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3. When to use a Surrogate 
Model

• One potential issue with surrogate models is the curse of 
dimensionality, which refers to poor scalability with the 
number of inputs.

• The larger the number of inputs, the more model evaluations 
are needed to construct a surrogate model that is accurate 
enough.

• Therefore, the reasons for using surrogate models cited earlier 
might not be enough if the optimization problem has a large 
number of design variables.

• The SBO process is shown in Fig. 6.02.

• First, we use sampling methods to choose the initial points to 
evaluate the function or conduct experiments.

• These points are sometimes referred to as training data.
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3. When to use a Surrogate 
Model

• Next, we build a surrogate model from 
the sampled points.

• We can then perform optimization by 
querying the surrogate model.

• Based on the results of the 
optimization, we include additional 
points in the sample and reconstruct 
the surrogate (infill).

• We repeat this process until some 
convergence criterion, or a maximum 
number of iterations is reached.

Figure 6.02 Overview of surrogate-based optimization 

procedure.
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3. When to use a Surrogate 
Model

• In some procedures, infill is omitted; the surrogate is entirely 
constructed upfront and not subsequently updated.

• The optimization step can be performed using any of the 
methods we covered previously.

• Because surrogate models are smooth and their gradients are 
easily computed, gradient-based optimization is preferred (see 
Chapter 4).

• However, some surrogate models can be highly multimodal, in 
which case a global search is preferred, either using gradient-
based with multistart or a global gradient free method (see 
Chapter 5).

• This chapter discusses sampling, constructing a surrogate, and 
infill with some associated optimization strategies.



12

3. When to use a Surrogate 
Model

• We devote separate sections to two surrogate modelling 
methods that are more involved and widely used: kriging and 
deep neural networks.

• Many of the concepts discussed in this chapter have a wide 
range of applications beyond optimization.
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4. Sampling

• Sampling methods, also known as sampling plans, select the 
evaluation points to construct the initial surrogate.

• These evaluation points must be chosen carefully.

• A straightforward approach is full factorial sampling, where we 
discretize each dimension and evaluate at all combinations of 
the resulting grid.

• This is not efficient because it scales exponentially with the 
number of input variables.

• One of the significant challenges of sampling methods is the 
dimensionality.

• For SBO, even with better sampling plans, using a large number 
of variables is costly.

• We need to identify the most important or most influential 
variables.
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4. Sampling

• Knowledge of the particular domain is helpful, as is exploring 
the magnitude of the entries in a gradient vector across 
multiple points in the domain.

• We can use various strategies to help us decide which variables 
matter most, but for our purposes, we assume that the most 
influential variables have already been determined so that the 
dimensionality is reasonable.

• Having selected a set of variables, we are now interested in 
sampling methods that characterize the design space of interest 
more efficiently than full factorial sampling.
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4. Sampling

• In addition to their use in SBO, the sampling strategies 
discussed in this section are useful in many other applications: 
initializing a genetic algorithm (Section 5.7), a particle swarm 
optimization (Section 5.8) or a multistart gradient-based 
algorithm, or choosing the points to run in a Monte Carlo 
simulation.

• Because the function behaviour at each sample is independent, 
we can efficiently parallelize the evaluation of the functions.
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4. Sampling

4.1. Latin Hypercube sampling

• Latin hypercube sampling (LHS) is a popular sampling method 
that is built on a random process but is more effective and 
efficient than pure random sampling.

• Random sampling scales better than full factorial searches, but 
it tends to exhibit clustering and requires many points to reach 
the desired distribution (i.e., the law of large numbers).

• For example, Fig. 6.03 compares 50 randomly generated points 
across uniform distributions in two dimensions versus Latin 
hypercube sampling.

• In random sampling, each sample is independent of past 
samples, but in LHS, we choose all samples beforehand to 
ensure a well-spread distribution.
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4. Sampling

4.1. Latin Hypercube sampling

• To describe the methodology, consider two random variables 
with bounds, whose design space we can represent as a square. 

Figure 6.03 Contrast between random and Latin hypercube sampling with 50 

points using uniform distributions.
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4. Sampling

4.1. Latin Hypercube sampling

• Say we wanted only eight samples; we could divide the design 
space into eight intervals in each dimension, generating the 
grid of cells shown in Fig. 6.04.

• A full factorial search would identify a point in each cell, but 
that does not scale well.

• To be as efficient as possible and still cover the variation, we 
would want each row and each column to have one sample in it.

Figure 6.04 A two-dimensional design space divided 

into eight intervals in each dimension.
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4. Sampling

4.1. Latin Hypercube sampling

• In other words, the projection of points onto each dimension 
should be uniform.

• For example, the left side of Fig. 6.05 shows the projection of a 
uniform LHS onto each dimension.

• We see that the points create a uniformly spread histogram.

Figure 6.05 Example LHS with projections onto the axes.
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4. Sampling

4.1. Latin Hypercube sampling

• The concept where one and only one point exists in any given 
row or column is called a Latin square, and the generalization 
to higher dimensions is called a Latin hypercube.

• There are many ways to achieve this, and some choices are 
better than others.

• Consider the sampling plan shown on the left of Fig. 6.06.

• This plan meets our criteria but clearly does not fill the space 
and likely will not capture the relationships between design 
parameters well.

• Alternatively, the right side of Fig. 6.06 has a sample in each 
row and column while also spanning the space much more 
effectively.
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4. Sampling

4.1. Latin Hypercube sampling

• LHS can be posed as an optimization problem where we seek to 
maximize the distance between the samples.

• The constraint is that the projection on each axis must follow a 
chosen probability distribution.

Figure 6.06 Contrasting sampling strategies that both fulfill the uniform 
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4. Sampling

4.1. Latin Hypercube sampling

• The specified distribution is often uniform, as in the previous 
examples, but it could also be any distribution, such as a 
normal distribution, as shown on the right side of Fig. 6.05. 

• This optimization problem does not have a unique solution, so 
random processes are used to determine the combination of 
points.

• Additionally, points are not usually placed in cell centers but at 
a random location within a given cell to allow for the possibility 
of reaching any point in the domain.

• The advantage of the LHS approach is that rather than relying 
on the law of large numbers to fill out our chosen probability 
distributions, we enforce it as a constraint.

• This method may still require many samples to characterize the 
design space accurately, but it usually requires far fewer than 
pure random sampling.
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4. Sampling

4.1. Latin Hypercube sampling

• Instead of defining LHS as an optimization problem, a much 
simpler approach is typically used in which we ensure one 
sample per interval, but we rely on randomness to choose point 
combinations.

• Although this does not necessarily yield a maximum spread, it 
works well in practice and is simple to implement.

• Before discussing the algorithm, we discuss how to generate 
other distributions besides just uniform distributions.

• We can convert from uniformly sampled points to an arbitrary 
distribution using a technique called inversion sampling. 

• Assume that we want to generate samples x from an arbitrary 
probability density function (PDF) p(x) or, equivalently, from 
the corresponding cumulative distribution function (CDF) P(x).
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4. Sampling

4.1. Latin Hypercube sampling

• The probability integral transform states that for any 
continuous CDF, y=P(x), the variable y is uniformly distributed 
(a simple proof, but it is not shown here to avoid introducing 
additional notation).

• The procedure is to randomly sample from a uniform 
distribution (e.g., generate y), then compute the corresponding 
x such that P(x)=y, which we denote as x=P-1y.

• This latter step is known as an inverse CDF, a percent-point 
function, or a quantile function.

• This process is depicted in Fig. 6.07 for a normal distribution. 

• This same procedure allows us to use LHS with any 
distribution, simply by generating the samples on a uniform 
distribution.
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4. Sampling

4.1. Latin Hypercube sampling

Figure 6.07 An example of inversion sampling with a normal distribution. A few uniform samples 

are shown on the y-axis. The points are evaluated by the inverse CDF, represented by the arrows 

passing through the CDF for a normal distribution. If enough samples are drawn, the resulting 

distribution will be the PDF of a normal distribution.. S
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4. Sampling

4.1. Latin Hypercube sampling

• A typical algorithm is described in Alg. 6.1.

• For each axis, we partition the CDF in ns evenly spaced regions 
(evenly spaced along the CDF, which means that each region is 
equiprobable).

• We generate a random number within each evenly spaced 
interval, where 0 corresponds to the bottom of the interval and 
1 to the top.

• We then evaluate the inverse CDF as described previously so 
that the points match our specified distribution (the CDF for a 
uniform distribution is just a line P(x)=x, so the output is not 
changed).

• Next, the column of points for that axis is randomly permuted. 

• This process is repeated for each axis according to its specified 
probability distribution.
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4. Sampling

4.1. Latin Hypercube sampling

Algorithm 6.1: Latin hypercube sampling
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4. Sampling

4.1. Latin Hypercube sampling

• An example using this algorithm for eight points is shown in 
Fig. 6.08.

• In this example, we use a uniform distribution for x1 and a 
normal distribution for x2.

• There is one point in each equiprobable interval.

• As stated before, randomness does not necessarily ensure a 
good spread, but optimizing the spread is difficult because the 
function is highly multimodal.

• Instead, to encourage high spread, we could generate multiple 
Latin hypercube samples with this algorithm and select the one 
with the largest sum of the distance between points.
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4. Sampling

4.1. Latin Hypercube sampling

Figure 6.08 An example from the LHS algorithm showing uniform distribution in x1 and a 

Gaussian distribution in x2 with eight sample points. The equiprobable bins are shown as grid

lines.
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4. Sampling

4.2. Low-Discrepancy Sequences

• Low-discrepancy sequences generate deterministic sequences 
of points that are well spread.

• Each new point added in the sequence maintains low 
discrepancy - discrepancy refers to the variation in point 
density throughout the domain.

• Hence, a low-discrepancy set is close to even density (i.e., well 
spread).

• These sequences are called quasi-random because they often 
serve as suitable replacements for applications that use random 
sequences, but they are not random or even pseudorandom.

• An advantage of low-discrepancy sequences over LHS is that 
most of the approaches do not require selecting all the samples 
beforehand.
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4. Sampling

4.2. Low-Discrepancy Sequences

• These methods generate deterministic sequences; in other 
words, we generate the same sequence of points whether we 
choose them beforehand or add more later.

• This property is particularly advantageous in iterative 
procedures.

• We may choose an initial sampling plan and add more well-
spread points to the sample later.

• This is not necessarily an advantage for the methods of this 
chapter because the optimization drives the selection of new 
points rather than continuing to seek spread out samples. 

• However, this feature is useful for other applications, such as 
quadrature, Monte Carlo simulations, and other problems 
where an iterative sampling process is used to determine 
statistical convergence.
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4. Sampling

4.2. Low-Discrepancy Sequences

• Low-discrepancy sequences add more points that are well 
spread without having to throw out the existing samples.

• Even in non-iterative procedures, these sampling strategies can 
be a useful alternative.

• Several of these sequences are built on generalizations of the 
one-dimensional van der Corput sequence to more than one 
dimension.

• Such sequences are defined by representing an integer i in a 
given integer base b (the van der Corput sequence is always 
base 2):

(6.01)𝑖 = 𝑎0 + 𝑎1𝑏 + 𝑎2𝑏2 + ⋯ + 𝑎𝑟𝑏𝑟  𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ [0, 𝑏 − 1]
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4. Sampling

4.2. Low-Discrepancy Sequences

• If the base is 2, this is just a standard binary sequence.

• After determining the relevant coefficients (aj), the ith element 
of the sequence is

• An algorithm to generate an element in this sequence, also 
known as a radical inverse function for base b, is given in Alg. 
6.2.

• For base 2, the sequence is as follows:

(6.02)𝜙𝑏(𝑖) =
𝑎0

𝑏
+

𝑎1

𝑏2
+

𝑎2

𝑏3
+ ⋯ +

𝑎𝑟

𝑏𝑟+1

(6.03)
1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8
,

1

16
,

9

16
, …
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4. Sampling

4.2. Low-Discrepancy Sequences

Algorithm 6.2: Radical inverse function
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4. Sampling

4.2. Low-Discrepancy Sequences

• The interval is divided in half, and then each subinterval is also 
halved, with new points spreading out across the domain (see 
Fig. 6.09).

Figure 6.09 Van Der Corput sequence.
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4. Sampling

4.2. Low-Discrepancy Sequences

• Similarly, for base 3, the interval is split into thirds, then each 
subinterval is split into thirds, and so on:

(6.04)
1

3
,
2

3
,
1

9
,
4

9
,
7

9
,
2

9
,
5

9
,
8

9
,

1

27
, …



37

4. Sampling
4.2. Low-Discrepancy Sequences

4.2.1. Halton sequence

• A Halton sequence uses pairwise prime numbers (larger than 1) 
for the base of each dimension of the problem.

• The ith point in the Halton sequence is

where the bj set is pairwise prime.

• As an example in two dimensions, Fig. 6.10 shows 30 generated 
points of the Halton sequence where x1 uses base 2, and x2 uses 
base 3, and then a subsequent 20 generated points are added 
(in another colour), showing the reuse of existing points.

• If the dimensionality of the problem is high, then some of the 
base combinations lead to points that are highly correlated and 
thus undesirable for a sampling plan.

(6.05)𝜙 𝑖, 𝑏1 , 𝜙 𝑖, 𝑏2 , … , 𝜙 𝑖, 𝑏𝑛𝑥
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4. Sampling
4.2. Low-Discrepancy Sequences

4.2.1. Halton sequence

Figure 6.11 

Halton sequence 

with base 17 for 

x1 and base 19 
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Figure 6.10 Halton sequence with base 2 for x1 and base 3 

for x2. First, 30 points are selected (in blue), and then 20 

points are added (in red). These points would be identical to 

50 points chosen at once.
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4. Sampling
4.2. Low-Discrepancy Sequences

4.2.1. Halton sequence

• For example, the left of Fig. 6.11 shows 50 generated points 
where x1 uses base 17, and x2 uses base 19.

• To avoid this issue, we can use a scrambled Halton sequence.

• Scrambling can be accomplished by generating a permutation 
array containing a random permutation of the integers 
p=[0,1,…,b-1].

• Then, rather than using the integers a directly in Eq. 6.02, we 
use the entries of a as the indices of the permutation array.

• If p is the permutation array, we have:

(6.06)𝜙𝑏(𝑖) =
𝑝𝑎0

𝑏
+

𝑝𝑎1

𝑏2
+

𝑝𝑎2

𝑏3
+ ⋯ +

𝑝𝑎𝑟

𝑏𝑟+1
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4. Sampling
4.2. Low-Discrepancy Sequences

4.2.1. Halton sequence

• The permutation array is fixed for all digits 0 and for all np 
points in the domain.

• The right side of Fig. 6.11 shows the same example (with base 17 
and base 19) but with scrambling to weaken the strong 
correlations.
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4. Sampling
4.2. Low-Discrepancy Sequences

4.2.2. Hammersley sequence

• The Hammersley sequence is closely related to the Halton 
sequence.

• However, it provides better spacing if we know beforehand the 
number of points (np) that we are going to use.

• This approach only needs nx-1 bases (still pairwise prime) 
because the first dimension uses regular spacing:

• Because this sequence needs to know the number of points (np) 
beforehand, it is less useful for iterative procedures.

• However, the implementation is straightforward, and so it may 
still be a useful alternative to LHS.

• Figure 6.12 shows 50 points generated from a Hammersley 
sequence where the x2-axis uses base 2.

(6.07)
𝑖

𝑛𝑝
, 𝜙 𝑖, 𝑏1 , 𝜙 𝑖, 𝑏2 , … , 𝜙 𝑖, 𝑏𝑛𝑥−1
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4. Sampling
4.2. Low-Discrepancy Sequences

4.2.2. Hammersley sequence

• Figure 6.12 shows 50 points generated from a Hammersley 
sequence where the x2-axis uses base 2.

Figure 6.12 Hammersley sequence with base 2 for the x2-axis.
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4. Sampling
4.2. Low-Discrepancy Sequences

4.2.3. Other sequences

• A wide variety of other low-discrepancy sequences exist.

• The Faure sequence is similar to the Halton, but it uses the 
same base for all dimensions and uses permutation scrambling 
for each dimension instead.

• Sobol sequences use base 2 sequences but with a reordering 
based on “direction numbers”.

• Niederreiter sequences are effectively a generalization of Sobol 
sequences to other bases.
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5. Constructing a Surrogate

• Once sampling is completed, we have a list of data points, often 
called training data:

where 𝑥(𝑖) is an input vector from the sampling plan, and 

𝑓(𝑖) contains the corresponding outputs from evaluating the 

model: 𝑓(𝑖) = 𝑓 𝑥(𝑖) .

• We seek to construct a surrogate model from this data set

• Surrogate models can be based on physics, mathematics, or a 
combination of the two.

• Incorporating known physics into a model is often desirable to 
improve model accuracy.

(6.08)𝑥(𝑖), 𝑓(𝑖)
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5. Constructing a Surrogate

• However, functional relationships are unknown for many 
complex problems, and a data-driven mathematical model can 
be more effective.

• Surrogate-based models can be based on interpolation or 
regression, as illustrated in Fig. 6.13.

• Interpolation builds a function that exactly matches the 
provided training data.

Figure 6.13 Interpolation models match the training 

data at the provided points, whereas regression models 

minimize the error between the training data and a 

function with an assumed trend.
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5. Constructing a Surrogate

• Regression models do not try to match the training data points 
exactly; instead, they minimize the error between a smooth 
trend function and the training data.

• The nature of the training data can help decide between these 
two types of surrogate models.

• Regression is particularly useful when the data are noisy. 

• Interpolatory models may produce undesirable oscillations 
when fitting the noise.

• In contrast, regression models can find a smooth function that 
is less sensitive to the noise.

• Interpolation is useful when the data are highly multimodal 
(and not noisy).

• This is because a regression model may smooth over variations 
that are actually physical, whereas an interpolatory model can 
accurately capture those variations.
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5. Constructing a Surrogate

• There are two main steps involved in either type of surrogate 
model.

– First, we select a set of basis functions, which represent the form 
for the model.

– Second, we determine the model parameters that provide the best 
fit to the provided data.

• Determining the model parameters is an optimization problem, 
which we discuss first.

• We discuss linear regression and nonlinear regression, which 
are techniques for choosing model parameters for a given set of 
basis functions.

• Next, we discuss cross validation, which is a critical technique 
for selecting an appropriate model form.

• Finally, we discuss common basis functions.
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5. Constructing a Surrogate

5.1. Linear Least Squares Regression

• A linear regression model does not mean that the surrogate is 
linear in the input variables but rather that the model is linear 
in its coefficients (i.e., linear in the parameters we are 
estimating).

• For example, the following equation is a two-dimensional linear 

regression model, where we use መ𝑓 to represent our estimated 
model of the function 𝑓:

• This function is highly nonlinear, but it is classified as a linear 
regression model because the regression seeks to choose the 
appropriate values for the coefficients wi (and the function is 
linear in w).

• A general linear regression model can be expressed as

(6.09)መ𝑓 𝑥 = 𝑤1𝑥1
2 + 𝑤2𝑥1𝑥2 + 𝑤3exp(𝑥2) + 𝑤4𝑥1 + 𝑤5
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5. Constructing a Surrogate

5.1. Linear Least Squares Regression

• A general linear regression model can be expressed as

where w is a vector of weights, and 𝜓 is a vector of basis functions.

• In this section, we assume that the basis functions are provided. 

• In general, the basis functions can be any set of functions that 
we choose (and typically they are nonlinear).

• It is usually desirable for these functions to be orthogonal.

• The coefficients are chosen to minimize the error between our 

predicted function values መ𝑓 and the actual function values 𝑓(𝑖).

(6.10)መ𝑓 = 𝑤𝑇𝜓 𝑥 = ෍

𝑖

𝑤𝑖𝜓𝑖 𝑥
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5. Constructing a Surrogate

5.1. Linear Least Squares Regression

• Because we want to minimize both positive and negative errors, 
we minimize the sum of the square of the errors (or a weighted 
sum of squared errors):

• The solution to this optimization problem is called a least 
squares solution.

• If the regression model is linear, we can simplify this objective 
and solve the problem analytically.

• Recall that መ𝑓 = 𝜓𝑇𝑤, so the objective can be written as

(6.11)minimize
𝑤

෍

𝑖

መ𝑓 𝑤; 𝑥(𝑖) − 𝑓(𝑖) 2

(6.12)minimize
𝑤

෍

𝑖

𝜓(𝑥(𝑖))𝑇𝑤 − 𝑓(𝑖) 2
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5.1. Linear Least Squares Regression

• We can express this in matrix form by defining the following:

• Matrix Ψ is of size (𝑛𝑠 × 𝑛𝑤), where ns is the number of 
samples, nw the number of parameters in w, and 𝑛𝑠 ≥ 𝑛𝑤.

• This means that there should be more equations than 
unknowns or that we have sampled more points than the 
number of coefficients we need to estimate.

• This should make sense because our surrogate function is only 
an assumed form and generally not an exact fit to the actual 
underlying function.

• Thus, we need more data to create a good fit.

(6.13)Ψ =

− 𝜓(𝑥(1))𝑇 −

− 𝜓(𝑥(2))𝑇 −
− ⋮ −

− 𝜓(𝑥(𝑛𝑠))𝑇 −
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5.1. Linear Least Squares Regression

• Then the optimization problem can be written in matrix form 
as:

• Expanding the squared norm (i.e., 𝑥 2
2 = 𝑥𝑇𝑥) gives

• We can omit the last term from the objective because our 
optimization variables are w, and the last term has no w 
dependence:

(6.14)minimize 
𝑤

Ψ𝑤 − 𝑓 2
2

(6.15)minimize 
𝑤

𝑤𝑇Ψ𝑇Ψ𝑤 − 2𝑓𝑇Ψ𝑤 + 𝑓𝑇𝑓

(6.16)minimize 
𝑤

𝑤𝑇Ψ𝑇Ψ𝑤 − 2𝑓𝑇Ψ𝑤
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5.1. Linear Least Squares Regression

• This fits the general form for an unconstrained quadratic 
programming (QP) problem, as shown in Chapter 3:

onde

• Recall that an equality constrained QP (of which unconstrained 
is a subset) has an analytic solution as long as the QP is positive 
definite.

• In our case, we can show that & is positive definite as long as  
is full rank:

(6.17)minimize 
𝑤

1

2
𝑥𝑇𝑄𝑥 − 𝑞𝑇𝑥

(6.18)𝑄 = 2Ψ𝑇Ψ

(6.19)𝑞 = −2Ψ𝑇𝑓
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5.1. Linear Least Squares Regression

• In our case, we can show that Q is positive definite as long as  
Ψ is full rank:

• This is not surprising because the objective is a sum of squared 
values.

• Removing the portions associated with the constraints, the 
solution is

• In our case, this becomes

(6.20)𝑥𝑇𝑄𝑥 = 2𝑤𝑇Ψ𝑇Ψ𝑤 = 2 Ψ𝑥 2
2 > 0

(6.21)𝑄𝑥 = −𝑞

(6.22)2Ψ𝑇Ψ𝑤 = 2Ψ𝑇𝑓



55

5. Constructing a Surrogate

5.1. Linear Least Squares Regression

• After simplifying, we have an analytic solution for the weights:

• We sometimes express the linear relationship in Eq. 6.12 as 
Ψ𝑤 = 𝑓, although the case where there are more equations than 
unknowns does not typically have a solution (the problem is 
overdetermined).

• Instead, we seek the solution that minimizes the error 

Ψ𝑥 − 𝑓 2 , that is, Eq. 6.23.

• The quantity Ψ+ = Ψ𝑇Ψ −1Ψ𝑇 is called the pseudoinverse of 
Ψ (or more specifically, the Moore–Penrose pseudoinverse), 
and thus we can write Eq. 6.23 in the more compact form

(6.23)𝑤 = Ψ𝑇Ψ −1Ψ𝑇𝑓

(6.24)𝑤 = Ψ+𝑓
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5.1. Linear Least Squares Regression

• This allows for a similar form to solving a linear system of 
equations where an inverse would be used instead.

• In solving both a linear system and the linear least-squares 
equation (Eq. 6.23), we do not explicitly invert a matrix.

• For linear least squares, a QR factorization is commonly used 
for improved numerical conditioning as compared to solving 
Eq. 6.23 directly.
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5.1. Linear Least Squares Regression

Example 6.1: Linear regression.

• Consider the quadratic fit መ𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 where the 
coefficients we wish to estimate are 𝑤 = 𝑎, 𝑏, 𝑐  and the basis 
functions are 𝜓 = 𝑥2, 𝑥, 1 .

• We are provided ns the data points, x and f , shown as circles in 
Fig. 6.14. From these data, we construct the matrix Ψ for our 
basis functions as follows

Figure 6.14 Linear least squares example with a quadratic 

fit on a one-dimensional function.
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Ψ =

𝑥(1)2
𝑥(1) 1

𝑥(2)2
𝑥(2) 1
⋮

𝑥(𝑛𝑠)2
𝑥(𝑛𝑠) 1
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5.1. Linear Least Squares Regression

Example 6.1: Linear regression (continued).

• We can then solve for the coefficients w using the linear least 
squares solution (Eq. 6.23).

• Substituting the coefficients and respective basis functions into 
Eq. 6.10, we obtain the surrogate model

which is also plotted in Fig. 6.14 as a solid line.

መ𝑓 𝑥 = 𝑤1𝑥2 + 𝑤2𝑥 + 𝑤3
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5.2. Other regressions

• There are other possible regressions that one can use.

• For example:
– Maximum Likelihood Interpretation

– Nonlinear Least Squares Regression
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5.3. Cross validation

• The other important consideration for developing a surrogate 
model is the choice of the basis functions in 𝜓.

• In some instances, we may know something about the model 
behaviour and thus what type of basis functions should be used, 
but generally, the best way to determine the basis functions is 
through cross validation.

• Cross validation is also helpful in characterizing error, even if 
we already have a chosen set of basis functions.

• One of the reasons we use cross validation is to prevent 
overfitting.

• Overfitting occurs when we have too many degrees of freedom 
and closely fit a given set of data, but the resulting model has a 
poor predictive ability.
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5. Constructing a Surrogate

5.3. Cross validation

• In other words, we are fitting noise.

• The following example illustrates this idea with a one-
dimensional function.
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5.3. Cross validation

Example 6.2: The dangers of overfitting.

• Consider the set of training data (Fig. 6.15, left), which we use 
to create a surrogate function.

• This is a one-dimensional problem so that it can be easily 
visualized.

Figure 6.15 Fitting different order polynomials to data. S
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overfitting underfitting
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5.3. Cross validation

Example 6.2: The dangers of overfitting (continued).

• In general, however, visualization is limited, and determining 
the right basis functions to use can be difficult.

• If we use a polynomial basis, we might attempt to determine the 
appropriate order by trying each case (e.g., quadratic, cubic, 
quartic) and measuring the error in our fit (Fig. 6.15, center).

• It seems as if the higher the order of the polynomial, the lower 
the error.

• For example, a 20th-order polynomial reduces the error to 
almost zero.

• The problem is that although the error is low on this set of data, 
the predictive capability of such a model for other data points is 
poor.
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5.3. Cross validation

Example 6.2: The dangers of overfitting (continued).

• For example, the right side of Fig. 6.15 shows a 19th-order 
polynomial fit to the data.

• The model passes right through the points, but it does not work 
well for many of the points that are not part of the training set 
(which is the whole purpose of the surrogate).

• The opposite of overfitting is underfitting, which is also a 
potential issue.

• When underfitting, we do not have enough degrees of freedom 
to create a useful model (e.g., imagine using a linear fit for the 
previous example).
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5.3. Cross validation

• The solution to the overfitting problem highlighted in Ex. 6.2 is 
cross validation.

• Cross validation means that we use one set of data for training 
(creating the model) and a different set of data for assessing its 
predictive error.

• There are many different ways to perform cross validation; we 
describe two.

• Simple cross validation is illustrated in Fig. 6.16.

Figure 6.16 Simple 

cross-validation 

process.
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5. Constructing a Surrogate

5.3. Cross validation

• It consists of the following steps:

1. Randomly split your data into a training set and a validation set 
(e.g., a 70–30 split).

2. Train each candidate model (the different options for 𝜓) using 
only the training set but evaluate the error with the validation set. 
The error on previously unseen data is called the generalization 
error (eg in Fig. 6.16).

3. Choose the model with the lowest generalization error and 
optionally retrain that model using all of the data.

• An alternative option that is more involved but makes better 
use of the data is called k-fold cross validation.

• It is particularly advantageous when we have a small data set 
where we cannot afford to leave much out.
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5.3. Cross validation

• This procedure is illustrated in Fig. 6.17 and consists of the 
following steps:

1. Randomly split your data into n sets (e.g., n=10).

2. Train each candidate model using the data from all sets except 
one (e.g., 9 of the 10 sets) and use the remaining set for 
validation. Repeat for all n possible validation sets and average 
the performance.

3. Choose the model with the lowest average generalization error. 
Optionally, retrain with all the data.

• The extreme version of this process, when training data are 
very limited, is leave-one-out cross validation (i.e., each testing 
subset consists of one data point).
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5.3. Cross validation

Figure 6.17 Diagram of k-fold cross validation process.
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5. Constructing a Surrogate

5.3. Cross validation

Example 6.3: Cross validation helps to avoid overfitting.

• This example continues from Ex. 6.2.

• First, we perform k-fold cross validation using 10 divisions.

• The average error across the divisions using the training data is 
shown in Fig. 6.18 (with a smaller y-axis scale on the right).

• The error increases dramatically as the polynomial order 
increases.

Figure 6.18 Error 

from k-fold cross 

validation.
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5. Constructing a Surrogate

5.3. Cross validation

Example 6.3: Cross validation helps to 
avoid overfitting (continued).

• Zooming in on the flat region, we see 
a range of options with similar 
errors.

• Among the similar solutions, we 
generally prefer the simplest model.

• In this case, a fourth-order 
polynomial seems reasonable.

• A fourth-order polynomial is 
compared against the data in Fig. 
6.19.

• This model has a much better 
predictive ability.

Figure 6.19 A fourth-

order polynomial fit 

to the data.
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5.4. Common basis functions

• Although cross validation can help us find the lowest 
generalization error among a provided set of basis functions, we 
still need to determine what sets of options to consider.

• This selection is crucial because our model is only as good as 
the available options, but increasing the number of options 
increases computational time.

• The possibilities for basis functions are as numerous as the 
types of function.

• As stated before, it is generally desirable that they form an 
orthogonal set.

• We focus on a few commonly used functions.
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5. Constructing a Surrogate
5.4. Common basis functions

5.4.1. Polynomials

• Polynomials, of which we have already seen a few examples, are 
useful in many applications.

• However, we typically use low-order polynomials for regression 
because high-order polynomials rarely generalize well.

• Polynomials can be particularly effective in cases where a 
knowledge of the physics suggests them to be an appropriate 
choice (e.g., drag varies quadratically with speed).

• Because a lot of structure is already built into the model form, 
fewer data points are needed to create a reasonable model (e.g., 
a quadratic function in n dimensions needs at least 
n(n+1)/2+n+1 points, so this amounts to 6 points in two 
dimensions, 10 points in three dimensions, and so on).
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5.4. Common basis functions

5.4.2. Radial basis functions

• Another common type of basis function is a radial basis 
function.

• Radial basis functions are functions that depend on the 
distance from some center point and can be written as follows:

where c is the center point, and r is the radius about the center 
point.

• Although the center points can be placed anywhere, we usually 
choose the sampling data as centering points

(6.25)𝜓(𝑖) = 𝜓 𝑥 − 𝑐(𝑖) = 𝜓 𝑟(𝑖)

(6.26)𝜓(𝑖) = 𝜓 𝑥 − 𝑥(𝑖)



74

5. Constructing a Surrogate
5.4. Common basis functions

5.4.2. Radial basis functions

• This is often a useful choice because it captures the idea that 
our ability to predict function behavior is related to how close 
we are to known function values (in other words, nearby points 
are more highly correlated).

• This form naturally lends itself to interpolation, although 
regularization can be added to allow for regression. 

• Polynomials are often combined with radial basis functions 
because the polynomial can capture global function behavior, 
while the radial basis functions can introduce modifications to 
capture local behavior.

• One popular radial basis function is the Gaussian basis:

(6.27)𝜓 𝑖 (𝑥) = 𝑒𝑥𝑝 − ෍

𝑗

𝜃𝑗 𝑥 − 𝑥𝑗
(𝑖) 2
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5.4. Common basis functions

5.4.2. Radial basis functions

where 𝜃𝑗 are the model parameters.

• One of the forms of kriging discussed in the following section 
can be viewed as a radial basis function model with a Gaussian 
basis.

• The surrogate modelling toolbox (SMT) 
(https://smt.readthedocs.io/) is a useful package for surrogate 
modelling, with a particular focus on providing derivatives for 
use in gradient-based optimization.

• SMT includes surrogate modelling techniques that utilize 
gradients as training data to enhance accuracy and scalability 
with the number of inputs.
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5.4. Common basis functions

5.4.2. Radial basis functions

Example 6.4: Aerodynamic coefficients of airfoils.

• Create a surrogate model for Cl, Cd and Cm as functions of 
Reynolds number, angle-of-attack, flap chord ratio, and flap 
deflection, using multiquadric representation of numerical 
computed data.

• See paper: “Use of Multiquadric Functions for Multivariable 
Representation of the Aerodynamic Coefficients of Airfoils” 
(https://doi.org/10.1155/2021/6615601)
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6. Kriging

• Kriging is a popular surrogate modelling technique that can 
build approximations of highly nonlinear engineering 
simulations.

• We may not have a simple parametric form for such 
simulations that we can use with regression and expect a good 
fit.

• Instead of tuning the parameters of a functional form that 
describes what the function is, kriging tunes the parameters of 
a statistical model that describes how the function behaves.

• The kriging statistical model that approximates f consists of two 
terms: a function (x) that is meant to capture some of the 
function behaviour and a random variable Z(x).

• Thus, we can write the kriging model as
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• When we evaluate the function, we want to approximate at 
point x, we get a scalar value f(x).

• In contrast, when we evaluate the stochastic process (Eq. 6.28) 
at x, we get a random variable F(x) that has a normal 
distribution with mean  and variance 2.

• Although we wrote  as a function of x, most kriging models 
consider this to be constant because the random variable term 
alone is effective in capturing the function behavior.

• For the rest of this section, we discuss the case with constant , 
which is called ordinary kriging.

(6.28)𝐹 𝑥 = 𝜇 𝑥 + 𝑍 𝑥  𝑤ℎ𝑒𝑟𝑒 𝑍 𝑥 ~ℵ(0, 𝜎2)
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• Kriging is also referred to as Gaussian process interpolation, or 
more generally in the regression case discussed later in this 
section, as Gaussian process regression.

• The power of the statistical model lies in how it treats the 
correlation between the random variables.

• Although we do not know the exact form of the error term Z(x), 
we can still make some reasonable assumptions about it. 

• Consider two points in a sampling plan, x(i) and x(j), and the 
corresponding terms, Z(x(i)) and Z(x(j)).

• Intuitively, we expect Z(x(i)) to be close to Z(x(j)) whenever x(i) is 
close to x(j).

• Therefore, it seems reasonable to assume that the correlation 
between Z(x(i)) and Z(x(j)) is a function of the distance between 
the two points.
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• In kriging, we assume that this correlation is given by a kernel 
function K(x(i),x(j)):

• As a matrix, the kernel is represented as Kij=K(x(i),x(j)).

• Various kernel functions are used with kriging.

• The most commonly used kernel function is

• where 𝜃𝑙 ≥ 0, 0 ≤ 𝑝𝑙 ≤ 2, and nd is the number of dimensions 
(i.e., the length of the vector x).

• If every 𝑝𝑙 = 2, this becomes a Gaussian kernel.

(6.29)𝐾 𝑥(𝑖), 𝑥(𝑗) = 𝑐𝑜𝑟𝑟 𝑍 𝑥(𝑖) , 𝑍 𝑥(𝑗)

(6.30)𝐾 𝑥(𝑖), 𝑥(𝑗) = 𝑒𝑥𝑝 − ෍

𝑙=1

𝑛𝑑

𝜃𝑙 𝑥𝑙
(𝑖)

− 𝑥𝑙
(𝑗) 𝑝𝑙
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• Let us examine how the statistical model F defined in Eq. 6.28 
captures the typical behaviour of the function f.

• The parameter  captures the typical value, and 2 captures the 
expected variance.

• The kernel (or correlation) function (Eq. 6.30) implicitly 
models continuous functions.

• If f is continuous, we know that, as 𝑥𝑙
(𝑖)

− 𝑥𝑙
(𝑗)

→ 0, then 

𝑓 𝑥𝑙
(𝑖)

− 𝑓 𝑥𝑙
(𝑗)

→ 0. 

• This is captured in the kernel function because as 𝑥𝑙
(𝑖)

− 𝑥𝑙
(𝑗)

→

0, the correlation approaches 1.

• The parameter 𝜃𝑙 captures how active the function f is in the lth 
coordinate direction.
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• A unit difference in variable l ( 𝑥𝑙
(𝑖)

− 𝑥𝑙
(𝑗)

= 1) has a more 

significant impact on the correlation when 𝜃𝑙 is large.

• The exponent pl describes the smoothness of the function in the 
lth coordinate direction.

• Values of pl close to 2 produce smooth functions, whereas 
values closer to zero produce functions with more variation.

• Kriging surrogate modelling involves two main steps.

– The first step consists of using the data to estimate the statistical 
model parameters , 2, 𝜃1, …, 𝜃𝑛𝑑

, and 𝑝1, …, 𝑝𝑛𝑑
.

– The second step consists of making predictions using the statistical 
model and these estimated parameter values.
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• The parameter estimation uses the maximum likelihood 
approach which is complicated.

• Let us denote the random variable as 𝐹(𝑖) ≡ 𝐹 𝑥(𝑖)  and the 

vector of random variables as 𝐹 = 𝐹(1), … , 𝐹(𝑛𝑠) , where ns is 

the number of samples.

• Similarly, 𝑓(𝑖) ≡ 𝑓 𝑥(𝑖)  and the vector of observed function 

values is 𝑓 = 𝑓(1), … , 𝑓(𝑛𝑠) .

• Using this notation, we can say that the vector F is jointly 
normally distributed.

• This is also known as a multivariate Gaussian distribution.
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• The probability density function (PDF) (the likelihood that F=f) 
is

where e is a vector of 1s with size ns, and Σ  is the determinant of 
the covariance

• The covariance between two elements F(i) and F(j) of F is related 
to correlation by the following definition:

• We assume stationarity of the second moment, that is, the 
variance 2 is constant in the domain.

(6.31)𝑝 𝑓 =
1

(2𝜋) Τ𝑛𝑠 2 Σ Τ1 2
𝑒𝑥𝑝 −

1

2
(𝑓 − 𝑒𝜇)𝑇Σ−1(𝑓 − 𝑒𝜇)

(6.32)Σ𝑖𝑗 = 𝜎2𝐾 𝑥(𝑖), 𝑥(𝑗)

(6.33)

Σ𝑖𝑗 = 𝑐𝑜𝑣 𝐹(𝑖), 𝐹(𝑗) = 𝜎2𝑐𝑜𝑟𝑟 𝐹(𝑖), 𝐹(𝑗) = 𝜎2𝐾 𝑥(𝑖), 𝑥(𝑗)
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• The statistical model parameters 𝜃1, …, 𝜃𝑛𝑑
, and 𝑝1, …, 𝑝𝑛𝑑

 enter 

the likelihood (Eq. 6.31) via their effect on the kernel K (Eq. 
6.30) and hence on the covariance matrix Σ (Eq. 6.32).

• We estimate the parameters using the maximum log likelihood 
approach; that is, we maximize the probability of observing our 
data f conditioned on the parameters  and Σ.

• Using a PDF (Eq. 6.31) where  is constant and the covariance 
is Σ = 𝜎2𝐾, yields the following likelihood function:

• We now need to find the parameters , , 𝜃𝑖, and 𝑝𝑖 that 
maximize this likelihood function, that is, maximize the 
probability of our observations f.

(6.34)

𝐿 𝜇, 𝜎, 𝜃, 𝑝 =
1

(2𝜋) Τ𝑛𝑠 2𝜎𝑛𝑠 𝐾 Τ1 2
𝑒𝑥𝑝 −

𝑓 − 𝑒𝜇 𝑇𝐾−1(𝑓 − 𝑒𝜇)

2𝜎2
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6. Kriging

• We take the logarithm to form the log likelihood function:

• We can maximize part of this term analytically by taking 
derivatives with respect to  and , setting them equal to zero, 
and solving for their optimal values to obtain:

(6.35)

ℓ 𝜇, 𝜎, 𝜃, 𝑝 = −
𝑛𝑠

2
𝑙𝑛 2𝜋 −

𝑛𝑠

2
𝑙𝑛 𝜎2 −

1

2
𝑙𝑛 𝐾

−
𝑓 − 𝑒𝜇 𝑇𝐾−1(𝑓 − 𝑒𝜇)

2𝜎2

(6.36)𝜇∗ =
𝑒𝑇𝐾−1𝑓

𝑒𝑇𝐾−1𝑒

(6.37)𝜎∗2 =
𝑓 − 𝑒𝜇∗ 𝑇𝐾−1(𝑓 − 𝑒𝜇∗)

𝑛𝑠
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6. Kriging

• We now substitute these values back into the log likelihood 
function (Eq. 6.35), which yields

• This function, also called the concentrated likelihood function, 
only depends on the kernel , which depends on 𝜃 and p.

• We cannot solve for optimal values of 𝜃 and p analytically.

• Instead, we rely on numerical optimization to maximize Eq. 
6.38.

• Because 𝜃 can vary across a broad range, it is often better to 
search using logarithmic scaling.

• Once we solve that optimization problem, we compute the 
mean and variance in Eqs. 6.36 and 6.37.

(6.38)ℓ 𝜃, 𝑝 = −
𝑛𝑠

2
𝑙𝑛 𝜎∗2 −

1

2
𝑙𝑛 𝐾
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• Now that we have a fitted model, we can make predictions at 
new points where we have not sampled.

• We do this by substituting xp into a formula called the kriging 
predictor.

• The formula is unique, but there are many ways to derive it. 

• One way to derive it is to find the function value at xp that is the 
most consistent with the behaviour of the function captured by 
the fitted kriging model.

• Let fp be our guess for the value of the function at xp.

• One way to assess the consistency of our guess is to add (xp,fp) 
as an artificial point to our training data (so that we now have 
ns+1 points) and estimate the likelihood using the parameters 
from our fitted kriging model.
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• The likelihood of this augmented data can now be thought of as 
a function of fp : high values correspond to guessed values of fp 
that are consistent with function behavior captured by the fitted 
kriging model.

• Therefore, the value of fp that maximizes the likelihood of this 
augmented data set is a natural way to predict the value of the 
function.

• This is an optimization problem with a closed-form solution, 
and the corresponding formula is the kriging predictor.

• Now we outline the derivation of the kriging predictor.

• With the augmented point, our function values are ҧ𝑓 = 𝑓, 𝑓𝑝 , 

where f is the ns-vector of function values from the original 
training data.
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• Then, the correlation matrix with the additional data point is

where k is the correlation of the new point with the training data 
given by

• The 1 in the bottom right of the augmented correlation matrix 
(Eq. 6.39) is because the correlation of the new variable 

𝐹 𝑥𝑝  with itself is 1.

(6.39)ഥ𝐾 =
𝐾 𝑘
𝑘𝑇 1

(6.40)𝑘 =

𝑐𝑜𝑟𝑟 𝐹 𝑥(1) , 𝐹 𝑥𝑝 = 𝐾 𝑥(1), 𝑥𝑝

⋮

𝑐𝑜𝑟𝑟 𝐹 𝑥(𝑛𝑠) , 𝐹 𝑥𝑝 = 𝐾 𝑥(𝑛𝑠), 𝑥𝑝
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• The log likelihood function with these new augmented vectors 
and the previously determined parameters is as follows (see Eq. 
6.35):

• We want to maximize this function with respect to fp.

• Because only the last term depends on fp (it is a part of ҧ𝑓) we 
can omit the other terms and formulate the following:

ℓ 𝑓𝑝 = −
𝑛𝑠

2
𝑙𝑛 2𝜋 −

𝑛𝑠

2
𝑙𝑛 𝜎∗2 −

1

2
𝑙𝑛 ഥ𝐾

−
ҧ𝑓 − 𝑒𝜇∗ 𝑇 ഥ𝐾−1( ҧ𝑓 − 𝑒𝜇∗)

2𝜎∗2

maximize
𝑓𝑝

ℓ 𝑓𝑝 = −
ҧ𝑓 − 𝑒𝜇∗ 𝑇 ഥ𝐾−1( ҧ𝑓 − 𝑒𝜇∗)

2𝜎∗2 (6.41)
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• This problem can be solved analytically, yielding the mean 
value of the kriging prediction

• The mean square error of the kriging prediction (that is, the 
expected squared value of the error) is given by

• One attractive feature of kriging models is that they are 
interpolatory and thus match the training data exactly.

• To see how this is true, if xp is the same as one of the training 
data points, x(i), then k is just ith column of K.

𝑓𝑝 = 𝜇∗ + 𝑘𝑇𝐾−1( ҧ𝑓 − 𝑒𝜇∗) (6.42)

𝜎𝑝
2 = 𝜎∗2 1 − 𝑘𝑇𝐾−1𝑘 +

1 − 𝑘𝑇𝐾−1𝑒 2

𝑒𝑇𝐾−1𝑒
(6.43)
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• Hence, 𝐾−1𝑘 is a vector ei, with all zeros except for 1 in the ith 
element.

• In the prediction (Eq. 6.42), 𝑘𝑇𝐾−1 = 𝑒𝑖
𝑇 and so the last term is 

𝑓(1) − 𝜇∗, which means that 𝑓𝑝 = 𝑓(1).

• In the mean square error (Eq. 6.43), 𝑘𝑇𝐾−1𝑘 is the same as 
𝑘𝑇𝑒𝑖.

• This is the ith element of k, which is 1.

• Therefore, the first two terms in the brackets in Eq. 6.43 cancel, 
and the last term is zero, yielding 𝜎𝑝

2 = 0.

• This is expected: If we already sampled the point, the 
uncertainty about its function value should be zero.

• When describing a fitted kriging model, we often refer to the 

standard error as the square root of this quantity (i.e., 𝜎𝑝
2). 
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Example 6.5: One-dimensional kriging model.

• Consider the decaying sinusoid:

• We assume, however, that this function is unknown, and we 
sample at the following points:

• We can fit a kriging model to this data by following the 
procedure in this section.

• This includes solving the optimization problem of Eq. 6.38 
using a gradient-based method with exact derivatives.

• We fix p=2 and search for  in the range [10-3,102] with the 
exponent as the optimization variable.

𝑓(𝑥) = 𝑒𝑥𝑝 −0.1𝑥 sin(𝑥)

𝑥 = 0.5,2,2.5,9,10
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Example 6.5: One-dimensional kriging model (continued).

• The resulting interpolation is shown in Fig. 6.20, where we plot 
the mean line.

• The shaded area represents the uncertainty corresponding to ±1 
standard error.

• The uncertainty goes to zero at the known data points and is 
largest when far from known data points.

Figure 6.20 Kriging model showing the training data (dots), 

the kriging predictor (blue line) and the confidence interval 

corresponding to ±1 standard error (shaded areas), compared 

to the actual function (gray line).
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• The standard error is directly related to the confidence interval 
(e.g., ±1 standard error corresponds to a 68% confidence 
interval).

• If we can provide the gradients of the function at the training 
data points (in addition to the function values), we can use that 
information to build a more accurate kriging model.

• This approach is called gradient-enhanced kriging (GEK).

• The methodology is the same as before, except we add more 
observed outputs (i.e., in addition to the function values at the 
sampled points, we add their gradients).

• In addition to considering the correlation between the function 
values at different sampled points, the kernel matrix needs to 
be expanded to consider correlations between function values 
and gradients, gradients and function values, and among 
gradient components.
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• We can use still use equation (Eq. 6.42) for the GEK predictor 
and equation (Eq. 6.43) for the mean square error if we plug in 
“expanded versions” of the outputs f, the vector k, the matrix K, 
and the vector of 1s, e.

• We expand the output vector to include not just the function 
values at the sampled points but also their gradients:

𝑓𝐺𝐸𝐾 =

𝑓1

⋮
𝑓𝑛𝑠

∇𝑓1

⋮
∇𝑓𝑛𝑠

(6.44)
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• This vector is of length ns+nsnd, where nd is the dimension of x.

• The gradients are usually provided at the same x locations as 
the function samples, but that is not required.

• Recall that the term e* in Eq. 6.42 for the kriging predictor 
represents the expected value of the random variables 

𝐹(1), … , 𝐹(𝑛𝑠).

• Now that we have expanded the outputs to include the 
gradients at the sampled points, the mean vector needs to be 

expanded to include the expected values of ∇𝐹(1), which are all 
zero.

• We can still use e* in the formula for the predictor if we use 
the following definition:

𝑒𝐺𝐸𝐾 ≡ 1, … , 1,0, … , 0 (6.45)
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where 1 occurs for the first ns entries, and 0 for the remaining nsnd 
entries.

• The additional correlations (between function values and 
derivatives, and between derivatives and derivatives) are as 
follows:

𝑐𝑜𝑟𝑟 𝐹 𝑥(𝑖) , 𝐹 𝑥(𝑗) = 𝐾𝑖𝑗
(6.46)

𝑐𝑜𝑟𝑟 𝐹 𝑥(𝑖) ,
𝜕𝐹 𝑥(𝑗)

𝜕𝑥𝑙
=

𝜕𝐾𝑖𝑗

𝜕𝑥𝑙
(𝑗) (6.47)

𝑐𝑜𝑟𝑟
𝜕𝐹 𝑥(𝑖)

𝜕𝑥𝑙
, 𝐹 𝑥(𝑗)  =

𝜕𝐾𝑖𝑗

𝜕𝑥𝑙
(𝑖) (6.48)

𝑐𝑜𝑟𝑟
𝜕𝐹 𝑥(𝑖)

𝜕𝑥𝑙
,
𝜕𝐹 𝑥(𝑗)

𝜕𝑥𝑘
=

𝜕2𝐾𝑖𝑗

𝜕𝑥𝑙
(𝑖)

𝜕𝑥𝑘
(𝑗) (6.49)
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• Here, we use l and k to represent a component of a vector, and 

we use 𝐾𝑖𝑗 = 𝐾 𝑥(𝑖), 𝑥(𝑗)  as shorthand.

• For our particular kernel choice (Eq. 6.31), these correlations 
become the following

𝐾𝑖𝑗 = 𝑒𝑥𝑝 − ෍

𝑘=1

𝑛𝑑

𝜃𝑙 𝑥𝑙
(𝑖)

− 𝑥𝑙
(𝑙) 2

(6.50)

𝜕𝐾𝑖𝑗

𝜕𝑥𝑙
(𝑗)

= 2𝜃𝑙 𝑥𝑙
(𝑖)

− 𝑥𝑙
(𝑙)

𝐾𝑖𝑗 (6.51)

𝜕𝐾𝑖𝑗

𝜕𝑥𝑙
(𝑖)

= −
𝜕𝐾𝑖𝑗

𝜕𝑥𝑙
(𝑗) (6.52)
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where we used p=2.

• Putting this all together yields the expanded correlation matrix:

• where the (ns × nsnd) block representing the first derivatives is

𝜕2𝐾𝑖𝑗

𝜕𝑥𝑙
(𝑖)

𝜕𝑥𝑘
(𝑗)

= ൞
−4𝜃𝑙𝜃𝑘 𝑥𝑘

𝑖
− 𝑥𝑘

𝑙
𝑥𝑙

𝑖
− 𝑥𝑙

𝑙
𝐾𝑖𝑗 𝑙 ≠ 𝑘

−4𝜃𝑙
2 𝑥𝑙

𝑖
− 𝑥𝑙

𝑙
2

𝐾𝑖𝑗 + 2𝜃𝑙𝐾𝑖𝑗 𝑙 = 𝑘
(6.53)

(6.54)𝐾𝐺𝐸𝐾 =
𝐾 𝐽𝐾

𝐽𝐾
𝑇 𝐻𝐾
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and the (nsnd × nsnd) matrix of second derivatives is

𝐽𝐾 =

𝜕𝐾11

𝜕𝑥(1)

𝑇

⋯
𝜕𝐾1𝑛𝑠

𝜕𝑥(𝑛𝑠)

𝑇

⋮ ⋱ ⋮

𝜕𝐾1𝑛𝑠

𝜕𝑥(1)

𝑇

⋯
𝜕𝐾𝑛𝑠𝑛𝑠

𝜕𝑥(𝑛𝑠)

𝑇
(6.55)

𝐻𝐾 =

𝜕2𝐾11

𝜕𝑥(1)𝜕𝑥(1)
⋯

𝜕2𝐾1𝑛𝑠

𝜕𝑥(1)𝜕𝑥(𝑛𝑠)

⋮ ⋱ ⋮
𝜕2𝐾𝑛𝑠1

𝜕𝑥(𝑛𝑠)𝜕𝑥(1)
⋯

𝜕2𝐾𝑛𝑠𝑛𝑠

𝜕𝑥(𝑛𝑠)𝜕𝑥(𝑛𝑠)

(6.56)
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• We can still get our estimates * and *2 using Eqs. 6.36 and 
6.37, but using the expanded versions of K, e, f and replacing ns 
in Eq. 6.43 with ns(nd+1) , which is the new length of the 
outputs.

• The predictor equations (Eqs. 6.42 and 6.43) also apply with 
the expanded matrices and vectors.

• However, we also need to expand k in these computations to 
include the correlations between the gradients at the sampled 
points with the gradient at the point x where we make a 
prediction.
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• Thus, the expanded k is:

• One difficulty with GEK is that the kernel matrix quickly grows 
in size as the dimension of the problem increases, the number 
of samples increases, or both.

• Various approaches have been proposed to improve the scaling 
with higher dimensions, such as a weighted sum of smaller 
correlation matrices or a partial least squares approach.

𝑘𝐺𝐸𝐾 =

𝑘

𝑐𝑜𝑟𝑟
𝜕𝐹 𝑥(1)

𝜕𝑥(1)
, 𝐹 𝑥𝑝 = −

𝜕𝐾 𝑥(1), 𝑥𝑝

𝜕𝑥(1)

⋮

𝑐𝑜𝑟𝑟
𝜕𝐹 𝑥(𝑛𝑠)

𝜕𝑥(𝑛𝑠)
, 𝐹 𝑥𝑝 = −

𝜕𝐾 𝑥(𝑛𝑠), 𝑥𝑝

𝜕𝑥(𝑛𝑠)

(6.57)
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Example 6.6: Gradient-enhanced kriging.

• By repeating Ex. 6.6 but this time including the gradients (Fig. 
6.21) the standard error reduces dramatically between points. 

• The additional information contained in the derivatives 
significantly helps in creating a more accurate fit.

Figure 6.21 A GEK 

fit to the input data 

(circles) and a 

shaded confidence 

interval.
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Example 6.7: Two-dimensional kriging.

• The Jones function is shown on the left in Fig. 6.22. Using GEK 
with only 10 training points from a Hammersley sequence 
(shown as the dots), created the surrogate model on the right. A 
reasonable representation of this multimodal space can be 
captured even with a small number of samples.

Figure 6.22 

Kriging fit 

to the 

multimodal 

Jones 

function.
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• The version of kriging in this section is interpolatory.

• For noisy data, a regression approach can be used by modifying 
the correlation matrix as follows:

with >0.

• This adds a positive constant along the diagonal, so the model 
no longer correlates perfectly with the provided points.

• The parameter  is then an additional parameter to estimate in 
the maximum likelihood optimization.

• Even for interpolatory models, this term is often still added to 
the covariance matrix with a small constant value of  (near 
machine precision) to ensure that the correlation matrix is 
invertible.

𝐾𝑟𝑒𝑔 = 𝐾 + 𝜏𝐼 (6.58)
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• This section focused on some of the most common choices 
when using kriging, but many other versions exist.
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• Like kriging, deep neural networks can be used to approximate 
highly nonlinear simulations where we do not need to provide a 
parametric form.

• Neural networks follow the same basic steps described for other 
surrogate models but with a unique model leading to 
specialized approaches for derivative computation and 
optimization strategy.

• Neural networks loosely mimic the brain, which consists of a 
vast network of neurons.

• In neural networks, each neuron is a node that represents a 
simple function.

• A network defines chains of these simple functions to obtain 
composite functions that are much more complex.
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• For example, three simple functions, 𝑓(1), 𝑓(2), and 𝑓(3), may be 
chained into the composite function (or network):

• Even though each function may be simple, the composite 
function can express complex behaviour.

• Most neural networks are feed-forward networks, meaning that 
information flows from inputs x to outputs f.

• Recurrent neural networks include feedback connections.

• Figure 6.23 shows a diagram of a neural network.

• Each node represents a neuron.

• The neurons are connected between consecutive layers, forming 
a dense network.

𝑓(𝑥) = 𝑓(3) 𝑓(2) 𝑓 1 (𝑥) (6.59)
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• The first layer is the input layer, the last one is the output layer, 
and the middle ones are the hidden layers.

• The total number of layers is called the network’s depth.

• Deep neural networks have many layers, enabling the modeling 
of complex behavior.

Figure 6.23 Deep neural network with two 

hidden layers.
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• The first and last layers can be viewed as the inputs and outputs 
of a surrogate model.

• Each neuron in the hidden layer represents a function.

• This means that the output from a neuron is a number, and 
thus the output from a whole layer can be represented as a 
vector x.

• We represent the vector of values for layer k by 𝑥(𝑘), and the 

value for the ith neuron in layer k by 𝑥𝑖
(𝑘)

.

• Consider a neuron in layer k.

• This neuron is connected to many neurons from the previous 
layer k-1 (see the first part of Fig. 6.24).

• We need to choose a functional form for each neuron in the 
layer that takes in the values from the previous layer as inputs. 
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• Chaining 
together linear 
functions 
would yield 
another linear 
function.

• Therefore, 
some layers 
must use 
nonlinear 
functions.

Figure 6.24 Typical functional 

form for a neuron in the neural 

net.
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• The most common choice for hidden layers is a layer of linear 
functions followed by a layer of functions that create 
nonlinearity.

• A neuron in the linear layer produces the following 
intermediate variable:

• In vector form:

𝑧 = ෍

𝑗=1

𝑛

𝑤𝑗𝑥𝑗
(𝑘−1)

+ 𝑏 (6.60)

𝑧 = 𝑤𝑇𝑥(𝑘−1) + 𝑏 (6.61)
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• The first term is a weighted sum of the values from the neurons 
in the previous layer.

• The w vector contains the weights.

• The term b is the bias, which is an offset that scales the 
significance of the overall output.

• These two terms are analogous to the weights used in the 
previous section but with the constant term separated for 
convenience.

• The second column of Fig. 6.24 illustrates the linear 
(summation and bias) layer.

• Next, we pass z through an activation function, which we call 
a(z).
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• Historically, one of the most common activation functions has 
been the sigmoid function:

• This function is shown in the top plot of Fig. 6.25.

• The sigmoid function produces values between 0 and 1, so large 
negative inputs result in insignificant outputs (close to 0), and 
large positive inputs produce outputs close to 1.

• Most modern neural networks use a rectified linear unit (ReLU) 
as the activation function:

𝑎(𝑧) =
1

1 + 𝑒−𝑧 (6.62)

𝑎(𝑧) = max(0, 𝑧) (6.63)
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• This function is shown in the bottom 
plot of Fig. 6.25.

• The ReLU has been found to be far 
more effective than the sigmoid 
function in producing accurate neural 
networks.

• This activation function eliminates 
negative inputs.

• Thus, the bias term can be thought of 
as a threshold establishing what 
constitutes a significant value.

• The final two columns of Fig. 6.24 
illustrate the activation step.

Figure 6.25 Activation functions.
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• Combining the linear function with the activation function 
produces the output for the ith neuron:

• To compute the outputs for all the neurons in this layer, the 
weights w for this one neuron form one row in a matrix of 
weights W and we can write :

𝑥𝑖
(𝑘)

= 𝑎 𝑤𝑇𝑥(𝑘−1) + 𝑏𝑖 (6.64)

𝑥1
(𝑘)

⋮

𝑥𝑖
(𝑘)

⋮

𝑥𝑛𝑘

(𝑘)

= 𝑎

𝑊1,1 ⋯

⋮

𝑊1,𝑗

⋮

⋯ 𝑊1,𝑛𝑘

⋮
𝑊𝑖,1 ⋯ 𝑊𝑖,𝑗 ⋯ 𝑊𝑖,𝑛𝑘

⋮
𝑊𝑛𝑘,1 ⋯

⋮
𝑊𝑛𝑘,𝑗

⋮
⋯ 𝑊𝑛𝑘,𝑛𝑘

𝑥1
(𝑘−1)

⋮

𝑥𝑗
(𝑘−1)

⋮

𝑥𝑛𝑘−1

(𝑘−1)

+

𝑏1

⋮
𝑏𝑖

⋮
𝑏𝑛𝑘

(6.65)
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or

• The activation function is applied separately for each row.

• The following equation is more explicit (where wi is the ith row 
of W):

• This neural network is now parameterized by a number of 
weights.

• Like other surrogate models, we need to determine the optimal 
value for these parameters (i.e., train the network) using 
training data.

𝑥(𝑘) = 𝑎 𝑊𝑥(𝑘−1) + 𝑏 (6.66)

𝑥𝑖
(𝑘)

= 𝑎 𝑤𝑖
𝑇𝑊𝑥𝑖

(𝑘−1)
+ 𝑏𝑖 (6.67)
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• In the example of Fig. 6.23, there is a layer of 5 neurons, 7 
neurons, 7 neurons, and then 4 neurons, and so there would be 
5×7+7×7+7×4 weights and 7+7+4 bias terms, giving a total of 
130 variables.

• This represents a small neural network because there are few 
inputs and few outputs.

• Large neural networks can have millions of variables.

• We need to optimize those variables to minimize a cost 
function.

• As before, we use a maximum likelihood estimate where we 
optimize the parameters  (weights and biases in this case) to 
maximize the probability of observing the output data y 
conditioned on our inputs x.
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• This results in a sum of squared errors function:

• We now have the objective and variables in place to train the 
neural network.

• As with the other models discussed in this chapter, it is critical 
to set aside some data for cross validation.

• Because the optimization problem (Eq. 6.68) often has a large 
number of parameters , we generally use a gradient-based 
optimization algorithm.

• To solve Eq. 6.68 using gradient-based optimization, we require 
the derivatives of the objective function with respect to the 
weighs .

(6.68)minimize
𝜃

෍

𝑖=1

𝑛

መ𝑓 𝜃; 𝑥(𝑖) − 𝑓(𝑖) 2
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• Because the objective is a scalar and the number of weights is 
large, reverse-mode algorithmic differentiation (AD) is ideal to 
compute the required derivatives.

• Reverse-mode AD is known in the machine learning 
community as backpropagation.

• Whereas general-purpose reverse-mode AD operates at the 
code level, backpropagation usually operates on larger sets of 
operations and data structures defined in machine learning 
libraries.

• Although less general, this approach can increase efficiency and 
stability.

• The ReLU activation function (Fig. 6.25, bottom) is not 
differentiable at z=0, but in practice, this is generally not 
problematic - primarily because these methods typically rely on 
inexact gradients anyway, as discussed next.
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• The objective function in Eq. 6.68 consists of a sum of 
subfunctions, each of which depends on a single data point 

𝑥(𝑖), 𝑓(𝑖) .

• Objective functions vary across machine learning applications, 
but most have this same form:

where

• As previously mentioned, the challenge with these problems is 
that we often have large training sets where n may be in the 
billions.

(6.69)minimize
𝜃

𝑓 𝜃

(6.70)𝑓 𝜃 = ෍

𝑖=1

𝑛

ℓ 𝜃; 𝑥(𝑖), 𝑓(𝑖) = ෍

𝑖=1

𝑛

ℓ𝑖 𝜃
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• That means that computing the objective can be costly, and 
computing the gradient can be even more costly.

• If we divide the objective by n (which does not change the 
solution), the objective function becomes an approximation of 
the expected value:

• From probability theory, we know that we can estimate an 
expected value from a smaller set of random samples.

• For the application of estimating a gradient, we call this subset 
of random samples a minibatch S = {x(1) … x(m)}, where m is 
usually between 1 and a few hundred.

(6.71)𝑓 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

ℓ𝑖 𝜃 = 𝔼 ℓ 𝜃
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• The entries x(1) , …, x(m) do not correspond to the first n entries 
but are drawn randomly from a uniform probability 
distribution (Fig. 6.26).

• Using the minibatch, we can estimate the gradient as the sum of 
the subfunction gradients at different training points:

Figure 6.26 Minibatches are randomly drawn from the training data.
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(6.72)∇𝜃𝑓 𝜃 ≈
1

𝑚
෍

𝑖∈𝑆

𝑛

∇𝜃ℓ 𝜃; 𝑥(𝑖), 𝑓(𝑖)
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• Thus, we divide the training data into these minibatches and 
use a new minibatch to estimate the gradients at each iteration 
in the optimization.

• This approach works well for these specific problems because of 
the unique form for the objective (Eq. 6.71).

• As an example, for one million training samples, a single 
gradient evaluation would require evaluating all one million 
training samples.

• Alternatively, for a similar cost, a minibatch approach can 
update the optimization variables a million times using the 
gradient estimated from one training sample at a time.

• This latter process usually converges much faster, mainly 
because we are only fitting parameters against limited data in 
these problems, so we generally do not need to find the exact 
minimum.
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• Typically, this gradient is used with steepest descent methods 
(Chapter 4), more typically referred to as gradient descent in 
the machine learning communities.

• As discussed in Chapter 4, steepest descent is not the most 
effective optimization algorithm.

• However, steepest descent with the minibatch updates, called 
stochastic gradient descent, has been found to work well in 
machine learning applications.

• This suitability is primarily because:

1. many machine learning optimizations are performed repeatedly, 

2. the true objective is difficult to formalize, and

3. finding the absolute minimum is not as important as finding a 
good enough solution quickly.
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• One key difference in stochastic gradient descent relative to the 
steepest descent method is that we do not perform a line 
search.

• Instead, the step size (called the learning rate in machine 
learning applications) is a preselected value that is usually 
decreased between major optimization iterations.

• Stochastic minibatching is easily applied to first-order methods 
and has thus driven the development of improvements on 
stochastic gradient descent, such as momentum, Adagrad, and 
Adam.

• Although some of these methods may seem somewhat ad hoc, 
there is mathematical rigor to many of them.

• Batching makes the gradients noisy, so second order methods 
are generally not pursued.
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• However, ongoing research is exploring stochastic batch 
approaches that might effectively leverage the benefits of 
second-order methods.
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• Once a surrogate model has been built, optimization may be 
performed using the surrogate function values.

• That is, instead of minimizing the expensive function 𝑓 𝑥 , we 

minimize the model መ𝑓 𝑥 , as previously illustrated in Fig. 6.01.

• The surrogate model may be static, but more commonly, it is 
updated between optimization iterations by adding new 
training data and rebuilding the model.

• The process by which we select new data points is called infill. 

• There are two main approaches to infill: prediction-based 
exploitation and error-based exploration.

• Typically, only one infill point is chosen at a time.

• The assumption is that evaluating the model is computationally 
expensive, but rebuilding and evaluating the surrogate is cheap.
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8.1. Exploitation

• For models that do not provide uncertainty estimates, the only 
real option is exploitation.

• A prediction-based exploitation infill strategy adds an infill 
point wherever the surrogate predicts the optimum.

• The reasoning behind this approach is that in SBO, we do not 
necessarily care about having a globally accurate surrogate; 
instead, we only care about having an accurate surrogate near 
the optimum.

• The most logical point to sample is thus the optimum predicted 
by the surrogate.

• Likely, the location predicted by the surrogate will not be at the 
true optimum.

• However, evaluating this point adds valuable information in the 
region of interest.
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8.1. Exploitation

• We rebuild the surrogate and re-optimize, repeating the process 
until convergence.

• This approach usually results in the quickest convergence to an 
optimum, which is desirable when the actual function is 
expensive to evaluate.

• The downside is that we may converge prematurely to an 
inferior local optimum for problems with multiple local optima.

• Even though the approach is called exploitation, the optimizer 
used on the surrogate can be a global search method (gradient-
based or gradient-free), although it is usually a local search 
method. 

• If uncertainty is present, using the mean value of the surrogate 
as the infill criteria results in essentially an exploitation 
strategy.
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8.1. Exploitation

• The algorithm is outlined in Alg. 6.3.

• Convergence could be based on a maximum number of 
iterations or a tolerance for the objective function’s fractional 
change.
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8.1. Exploitation

Algorithm 6.3: Exploitation-driven surrogate-based optimization
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8.2. Efficient global optimization

• An alternative approach to infill uses error-based exploration. 

• This approach requires using kriging (Section 6.6) or another 
surrogate approach that predicts not just function values but 
also error estimates.

• Although many infill metrics exist within this category, we 
focus on a popular one called expected improvement, and the 
associated algorithm, efficient global optimization (EGO).

• As stated previously, sampling where the mean is low is an 
exploitation strategy, but we do not necessarily want to sample 
where the uncertainty is high.

• That may lead to wasteful function calls in regions of the design 
space where the surrogate model is inaccurate but which are far 
from any optimum.
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8.2. Efficient global optimization

• Let the best solution we have found so far be represented 𝑓∗ =
𝑓(𝑥∗).

• The improvement for any new test point x is then given by

• If 𝑓(𝑥) ≥ 𝑓∗, there is no improvement, but if 𝑓 𝑥 < 𝑓∗, the 
improvement is the objective decrease magnitude.

• However, 𝑓(𝑥) is not a deterministic value in this model but 
rather a probability distribution.

• Thus, the expected improvement is the expected value (or 
mean) of the improvement:

(6.73)𝐼 𝑥 = max 𝑓∗ − 𝑓(𝑥), 0

(6.74)𝐸𝐼 𝑥 = 𝔼 max 𝑓∗ − 𝑓(𝑥), 0
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8.2. Efficient global optimization

• The expected value for a kriging model can be found 
analytically as:

• where Φ and 𝜙 are the CDF and PDF, respectively, for the 
standard normal distribution, and 𝜇𝑓 and 𝜎𝑓 are the mean and 

standard error functions produced from kriging (Eqs. 6.42 and 
6.43).

• The algorithm is similar to that of the previous section (Alg. 
6.3), but instead of choosing the minimum of the surrogate, the 
selected infill point is the point with the greatest expected 
improvement.

• The corresponding algorithm is detailed in Alg. 6.4.

(6.75)

𝐸𝐼 𝑥

= 𝑓∗ − 𝜇𝑓(𝑥) Φ
𝑓∗ − 𝜇𝑓(𝑥)

𝜎𝑓(𝑥)
+ 𝜎𝑓(𝑥)𝜙

𝑓∗ − 𝜇𝑓(𝑥)

𝜎𝑓(𝑥)
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8.2. Efficient global optimization

Algorithm 6.4: Efficient global optimization
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8.2. Efficient global optimization

Example 6.8: Expected improvement.

• Consider the same one-dimensional 
function of Ex. 6.5 using kriging 
(without gradients), where the data 
points and fit are shown again in Fig. 
6.27.

• The best point we have found so far is 
denoted in the figure as 𝑥∗, 𝑓∗ .

• For a Gaussian process model, the fit 
also provides a 1-standard-error 
region, represented by the shaded 
region.

Figure 6.27 At a given test point (xtest=3.•25), we highlight 

the probability distribution and the expected improvement 

in the shaded red region.
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8.2. Efficient global optimization

Example 6.8: Expected improvement (continued).

• Now imagine we want to evaluate this function at some new test 
point, xtest=3.25.

• In Fig. 6.27, the full probability distribution for the objective at 
xtest is shown in red.

• This probability distribution occurs at a fixed value of x, so we 
can visualize it in a dimension coming out of the page.

• Now, let us evaluate the expected improvement not just at xtest, 
but across the domain.

• The result is shown by the red function in the top left of Fig. 
6.28.

• A few select iterations in the convergence process are shown in 
the remaining panes of Fig. 6.28.
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8.2. Efficient global optimization

Example 6.8: Expected 
improvement (continued).

• On the top right, after 
the first promising 
valley is well explored, 
the middle region 
becomes the most likely 
location of potential 
improvements. 

• Eventually, the potential 
improvements are 
minor and we terminate 
(bottom right).

Figure 6.28 The process is repeated by 

evaluating expected improvement across 

the domain. S
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