
Gradient-Free
Optimization

Otimização em Engenharia
(15235)
2º Ciclo/Mestrado em Engenharia Aeronáutica

2024

Pedro V. Gamboa
Departamento de Ciências Aeroespaciais

Faculdade de Engenharia

2

0. Topics

• When to use gradient-free optimization methods

• Non-population based methods

• Population based methods

• Hybrid meta-heuristics

• Penalty functions

3

1. Introduction

• Gradient-free algorithms fill an essential role in optimization.

• The gradient-based algorithms introduced in Chapter 4 are
efficient in finding local minima for high-dimensional
nonlinear problems defined by continuous smooth functions

• However, the assumptions made for these algorithms are not
always valid, which can render these algorithms ineffective.

• Also, gradients might not be available when a function is given
as a black box.

• In this chapter, only a few popular representative gradient-free
algorithms are introduced.

• Most are designed to handle unconstrained functions only, but
they can be adapted to solve constrained problems by using
penalty or filtering methods.

4

2. When to use gradient-free
algorithms

• Gradient-free algorithms can be useful when gradients are not
available, such as when dealing with black-box functions.

• Although gradients can always be approximated with finite
differences, these approximations suffer from potentially
significant inaccuracies.

• Gradient-based algorithms require a more experienced user
because they take more effort to set up and run.

• Overall, gradient-free algorithms are easier to get up and
running but are much less efficient, particularly as the
dimension of the problem increases.

5

2. When to use gradient-free
algorithms

• One significant advantage of gradient-free algorithms is that
they do not assume function continuity.

• For gradient-based algorithms, function smoothness is
essential when deriving the optimality conditions, both for
unconstrained functions and constrained functions.

• More specifically, the Karush–Kuhn–Tucker (KKT) conditions
require that the function be continuous in value (C0), gradient
(C1), and Hessian (C2) in at least a small neighbourhood of the
optimum.

• If, for example, the gradient is discontinuous at the optimum, it
is undefined, and the KKT conditions are not valid.

• Away from optimum points, this requirement is not as
stringent.

6

2. When to use gradient-free
algorithms

• Although gradient-based algorithms work on the same
continuity assumptions, they can usually tolerate the occasional
discontinuity, as long as it is away from an optimum point.

• However, for functions with excessive numerical noise and
discontinuities, gradient-free algorithms might be the only
option.

• Many considerations are involved when choosing between a
gradient based and a gradient-free algorithm.

• One problem characteristic often cited as a reason for choosing
gradient-free methods is multimodality.

• Design space multimodality can be a result of an objective
function with multiple local minima.

• In the case of a constrained problem, the multimodality can
arise from the constraints that define disconnected or
nonconvex feasible regions.

7

2. When to use gradient-free
algorithms

• Some gradient-free methods feature a global search that
increases the likelihood of finding the global minimum.

• This feature makes gradient-free methods a common choice for
multimodal problems.

• However, not all gradient-free methods are global search
methods; some perform only a local search.

• Additionally, even though gradient-based methods are by
themselves local search methods, they are often combined with
global search strategies.

• It is not necessarily true that a global search, gradient-free
method is more likely to find a global optimum than a multi-
start gradient-based method.

• As always, problem-specific testing is needed.

8

2. When to use gradient-free
algorithms

• Furthermore, it is assumed far too often that any complex
problem is multimodal, but that is frequently not the case.

• Although it might be impossible to prove that a function is
unimodal, it is easy to prove that a function is multimodal
simply by finding another local minimum.

• Therefore, we should not make any assumptions about the
multimodality of a function until we show definite multiple
local minima.

• Additionally, we must ensure that perceived local minima are
not artificial minima arising from numerical noise.

• Another reason often cited for using a gradient-free method is
multiple objectives.

• Some gradient-free algorithms, such as the genetic algorithm,
can be naturally applied to multiple objectives.

9

2. When to use gradient-free
algorithms

• However, it is a misconception that gradient-free methods are
always preferable just because there are multiple objectives.

• Another common reason for using gradient-free methods is
when there are discrete design variables.

• Because the notion of a derivative with respect to a discrete
variable is invalid, gradient-based algorithms cannot be used
directly (although there are ways around this limitation).

• Some of the gradient-free algorithms (but not all) can handle
discrete variables directly.

• Although multimodality, multiple objectives, or discrete
variables are commonly mentioned as reasons for choosing a
gradient-free algorithm, these are not necessarily automatic
decisions, and careful consideration is needed.

10

2. When to use gradient-free
algorithms

• Assuming a choice exists (i.e., the function is not too noisy), one
of the most relevant factors when choosing between a gradient-
free and a gradient-based approach is the dimension of the
problem.

Figure 5.01 Cost of optimization for

increasing number of design variables in the

n-dimensional Rosenbrock function.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

• Figure 5.1 shows how many
function evaluations are
required to minimize the n-
dimensional Rosenbrock
function for varying
numbers of design
variables.

11

2. When to use gradient-free
algorithms

• Two classes of algorithms are shown in the plot: gradient-free
and gradient-based algorithms.

• The general takeaway is that for small-size problems (usually ≤
30 variables), gradient-free methods can be useful in finding a
solution.

• Furthermore, because gradient-free methods usually take much
less developer time to use, a gradient-free solution may even be
preferable for these smaller problems.

• However, if the problem is large in dimension, then a gradient-
based method may be the only viable method despite the need
for more developer time.

12

3. Classification of gradient-
free algorithms

• There is a much wider variety of gradient-free algorithms
compared with their gradient-based counterparts.

• Although gradient-based algorithms tend to perform local
searches, have a mathematical rationale, and be deterministic,
gradient-free algorithms exhibit different combinations of these
characteristics.

• Some of the most widely known gradient-free algorithms are
shown in Table 5.01 and classify them according to the
characteristics introduced in Figure 1.20.

13

3. Classification of gradient-
free algorithms

Table 5.01 Classification of gradient-free optimization methods using the characteristics of Fig.

1.20.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

14

3. Classification of gradient-free
algorithms

• Local search, gradient-free algorithms that use direct function
evaluations include the Nelder–Mead algorithm, generalized
pattern search (GPS), and mesh-adaptive direct search
(MADS).

• Although classified as local search in the table, the latter two
methods are frequently used with globalization approaches.

• The Nelder–Mead algorithm is heuristic, whereas the other two
are not.

• GPS and MADS are examples of derivative-free optimization
(DFO) algorithms, which, despite the name, do not include all
gradient-free algorithms.

• DFO algorithms are understood to be largely heuristic-free and
focus on local search.

15

3. Classification of gradient-free
algorithms

• GPS is a family of methods that iteratively seek an
improvement using a set of points around the current point.

• In its simplest versions, GPS uses a pattern of points based on
the coordinate directions, but more sophisticated versions use a
more general set of vectors.

• MADS improves GPS algorithms by allowing a much larger set
of such vectors and improving convergence.

16

3. Classification of gradient-free
algorithms

• Model-based, local search algorithms include trust-region
algorithms and implicit filtering.

• The model is an analytic approximation of the original function
(also called a surrogate model), and it should be smooth, easy
to evaluate, and accurate in the neighbourhood of the current
point.

• The trust-region approach can be considered gradient-free if
the surrogate model is constructed using just evaluations of the
original function without evaluating its gradients.

• This does not prevent the trust-region algorithm from using
gradients of the surrogate model, which can be computed
analytically.

• Implicit filtering methods extend the trust-region method by
adding a surrogate model of the function gradient to guide the
search.

17

3. Classification of gradient-free
algorithms

• This effectively becomes a gradient-based method applied to
the surrogate model instead of evaluating the function directly.

• Global search algorithms can be broadly classified as
deterministic or stochastic, depending on whether they include
random parameter generation within the optimization
algorithm.

18

3. Classification of gradient-free
algorithms

• Deterministic, global search algorithms can be either direct or
model based.

• Direct algorithms include Lipschitzian-based partitioning
techniques—such as the “divide a hyperrectangle” (DIRECT)
algorithm and branch-and-bound search - and multilevel
coordinate search (MCS).

• The DIRECT algorithm selectively divides the space of the
design variables into smaller and smaller n-dimensional boxes
— hyperrectangles.

• It uses mathematical arguments to decide which boxes should
be subdivided.

• Branch-and-bound search also partitions the design space, but
it estimates lower and upper bounds for the optimum by using
the function variation between partitions.

19

3. Classification of gradient-free
algorithms

• MCS is another algorithm that partitions the design space into
boxes, where a limit is imposed on how small the boxes can get
based on the number of times it has been divided.

20

3. Classification of gradient-free
algorithms

• Global-search algorithms based on surrogate models are
similar to their local search counterparts.

• However, they use surrogate models to reproduce the features
of a multimodal function instead of convex surrogate models.

• One of the most widely used of these algorithms is efficient
global optimization (EGO), which employs kriging surrogate
models and uses the idea of expected improvement to maximize
the likelihood of finding the optimum more efficiently.

• Other algorithms use radial basis functions (RBFs) as the
surrogate model and also maximize the probability of
improvement at new iterates.

21

3. Classification of gradient-free
algorithms

• Stochastic algorithms rely on one or more nondeterministic
procedures; they include hit-and-run algorithms and the broad
class of evolutionary algorithms.

• When performing benchmarks of a stochastic algorithm, you
should run a large enough number of optimizations to obtain
statistically significant results.

• Hit-and-run algorithms generate random steps about the
current iterate in search of better points.

• A new point is accepted when it is better than the current one,
and this process repeats until the point cannot be improved.

22

3. Classification of gradient-free
algorithms

• What constitutes an evolutionary algorithm is not well defined.

• Evolutionary algorithms are inspired by processes that occur in
nature or society.

• There is a plethora of evolutionary algorithms in the literature,
thanks to the fertile imagination of the research community and
a never-ending supply of phenomena for inspiration.

• These algorithms are more of an analogy of the phenomenon
than an actual model.

• They are, at best, oversimplified models and, at worst, barely
connected to the phenomenon.

• Nature-inspired algorithms tend to invent a specific
terminology for the mathematical terms in the optimization
problem.

• For example, a design point might be called a “member of the
population”, or the objective function might be the “fitness”.

23

3. Classification of gradient-free
algorithms

• The vast majority of evolutionary algorithms are population
based, which means they involve a set of points at each iteration
instead of a single one.

• Because the population is spread out in the design space,
evolutionary algorithms perform a global search.

• The stochastic elements in these algorithms contribute to global
exploration and reduce the susceptibility to getting stuck in
local minima.

• These features increase the likelihood of getting close to the
global minimum but by no means guarantee it.

• The algorithm may only get close because heuristic algorithms
have a poor convergence rate, especially in higher dimensions,
and because they lack a first-order mathematical optimality
criterion.

24

3. Classification of gradient-free
algorithms

• This chapter covers five gradient-free algorithms:

– Nelder–Mead algorithm,

– generalized pattern search (GPS)

– DIRECT method

– genetic algorithms (GA)

– particle swarm optimization (PSO)

• There are a few other algorithms that can be used for
continuous gradient-free problems (e.g., simulated annealing
and branch and bound) which are more frequently used to solve
discrete problems.

25

4. Nelder-Mead algorithm

• The simplex method of Nelder and Mead is a deterministic,
direct search method that is among the most cited gradient-free
methods.

• It is also known as the nonlinear simplex - not to be confused
with the simplex algorithm used for linear programming, with
which it has nothing in common.

• The Nelder–Mead algorithm is based on a simplex, which is a
geometric figure defined by a set of n+1 points in the design
space of n variables, X={x(0), x(1), …, x(n)}.

• Each point x(i) represents a design (i.e., a full set of design
variables).

• In two dimensions, the simplex is a triangle, and in three
dimensions, it becomes a tetrahedron (see Fig. 5.02).

• Each optimization iteration corresponds to a different simplex.

26

4. Nelder-Mead algorithm

• The algorithm modifies the simplex at each iteration using five
simple operations.

• The sequence of operations to be performed is chosen based on
the relative values of the objective function at each of the
points.

Figure 5.02 A simplex for n=3 has four vertices.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

27

4. Nelder-Mead algorithm

• The first step of the simplex algorithm is to generate n+1 points
based on an initial guess for the design variables.

• This could be done by simply adding steps to each component
of the initial point to generate n new points.

• However, this will generate a simplex with different edge
lengths, and equal-length edges are preferable.

• Suppose we want the length of all sides to be l and that the first
guess is x(0).

• The remaining points of the simplex, {x(1), …, x(n)}, can be
computed by

where s(i) is a vector whose components j are defined by

𝑥(𝑖) = 𝑥(0) + 𝑠(𝑖) (5.01)

28

4. Nelder-Mead algorithm

• At any given iteration, the objective f is evaluated for every
point, and the points are ordered based on the respective values
of f, from the lowest to the highest.

• Thus, in the ordered list of simplex points X={x(0), x(1), …, x(n-1),
x(n)}, the best point is x(0), and the worst one is x(n).

• The Nelder–Mead algorithm performs four main operations on
the simplex to create a new one: reflection, expansion, outside
contraction, inside contraction, and shrinking.

• The operations are shown in Fig. 5.03.

𝑠𝑗
(𝑖)

=

1

𝑛 2
𝑛 + 1 − 1 +

1

2
, 𝑖𝑓 𝑗 = 𝑖

1

𝑛 2
𝑛 + 1 − 1 , 𝑖𝑓 𝑗 ≠ 𝑖

(5.02)

29

4. Nelder-Mead algorithm

Figure 5.03 Nelder–Mead algorithm operations for n = 2.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

30

4. Nelder-Mead algorithm

• Each of these operations, except for the shrinking, generates a
new point, given by

where  is a scalar, and xC is the centroid of all the points except
for the worst one, that is,

• This generates a new point along the line that connects the
worst point, x(n), and the centroid of the remaining points, xC.

• This direction can be seen as a possible descent direction.

𝑥 = 𝑥𝐶 + 𝛼 𝑥𝐶 − 𝑥(𝑛)
(5.03)

𝑥𝐶 =
1

𝑛
෍

𝑖=0

𝑛−1

𝑥(𝑖)
(5.04)

31

4. Nelder-Mead algorithm

• Each iteration aims to replace the worst point with a better one
to form a new simplex.

• Each iteration always starts with reflection, which generates a
new point using Eq. 5.03 with =1, as shown in Fig. 5.03.

• If the reflected point is better than the best point, then the
“search direction” was a good one, and we go further by
performing an expansion using Eq. 5.03 with =2.

• If the reflected point is between the second-worst and the worst
point, then the direction was not great, but it improved
somewhat.

• In this case, we perform an outside contraction (=0.5).

• If the reflected point is worse than our worst point, we try an
inside contraction instead (=-0.5).

32

4. Nelder-Mead algorithm

• Shrinking is a last-resort operation that we can perform when
nothing along the line connecting x(n) and xC produces a better
point.

• This operation consists of reducing the size of the simplex by
moving all the points closer to the best point,

where =0.5.

• Algorithm 5.1 details how a new simplex is obtained for each
iteration.

• In each iteration, the focus is on replacing the worst point with
a better one instead of improving the best.

• The corresponding flowchart is shown in Fig. 5.04.

𝑥(𝑖) = 𝑥(0) + 𝛾 𝑥(𝑖) − 𝑥(0) 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 (5.05)

33

4. Nelder-Mead algorithm

Algorithm 5.1: Nelder-Mead algorithm

34

4. Nelder-Mead algorithm

Figure 5.04 Flowchart of Nelder–Mead.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

35

4. Nelder-Mead algorithm

• The cost for each iteration is one function evaluation if the
reflection is accepted, two function evaluations if an expansion
or contraction is performed, and n+2 evaluations if the
iteration results in shrinking.

• Although the n evaluations when shrinking can be parallelized,
it would not be worthwhile because the other operations are
sequential.

• There are a number of ways to quantify the convergence of the
simplex method.

• One straightforward way is to use the size of simplex, that is,

and specify that it must be less than a certain tolerance.

∆𝑥= ෍

𝑖=0

𝑛−1

𝑥(𝑖) − 𝑥(𝑛)
(5.06)

36

4. Nelder-Mead algorithm

• Another measure of convergence that can be used is the
standard deviation of the function values,

where ҧ𝑓 is the mean of the n+1 function values.

• Another possible convergence criterion is the difference
between the best and worst values in the simplex.

• Nelder–Mead is known for occasionally converging to non-
stationary points, so you should check the result if possible.

• Like most direct-search methods, Nelder–Mead cannot directly
handle constraints.

∆𝑓=
σ𝑖=0

𝑛 𝑓(𝑖) − ҧ𝑓
2

𝑛 + 1
(5.07)

37

4. Nelder-Mead algorithm

• One approach to handling constraints would be to use a penalty
method (discussed in Section 10) to form an unconstrained
problem.

• In this case, the penalty does not need to be differentiable, so a
linear penalty method would suffice.

38

4. Nelder-Mead algorithm

Example 5.1: Nelder–Mead algorithm applied to the bean
function.

Figure 5.05 Sequence of simplices that minimize the bean function.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

39

5. Generalized Pattern Search

• GPS builds upon the ideas of a coordinate search algorithm.

• In coordinate search, we evaluate points along a mesh aligned
with the coordinate directions, move toward better points, and
shrink the mesh when we find no improvement nearby.

• Consider a two-dimensional coordinate search for an
unconstrained problem.

• At a given point xk, points that are a distance k away in all
coordinate directions are evaluated, as shown in Fig. 5.06.

Figure 5.06 Local mesh for a two-dimensional

coordinate search at iteration k.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

40

5. Generalized Pattern Search

• If the objective function improves at any of these points (four
points in this case), the point is recentered with xk+1 at the most
improved point, the mesh size is kept the same at k +1=k , and
the next iteration is started.

• Alternatively, if none of the points offers an improvement, the
same centre is kept (xk +1=xk) and the mesh is shrunk to k+1<k.

• This process repeats until it meets some convergence criteria.

• We now explore various ways in which GPS improves
coordinate search.

• Coordinate search moves along coordinate directions, but this
is not necessarily desirable.

• Instead, the GPS search directions only need to form a positive
spanning set.

41

5. Generalized Pattern Search

• Given a set of directions 𝒟={d1, d1, …, dnd}, the set 𝒟 is a
positive spanning set if the vectors are linearly independent,
and a non-negative linear combination of these vectors spans
the n-dimensional space.

• Coordinate vectors fulfil this requirement, but there is an
infinite number of options.

• Vectors d are referred to as positive spanning directions.

• Only linear combinations with positive multipliers are
considered, so in two dimensions, the unit coordinate vectors Ƹ𝑒1
and Ƹ𝑒2 are not sufficient to span two-dimensional space;
however, Ƹ𝑒1, Ƹ𝑒2, − Ƹ𝑒1 and − Ƹ𝑒2 are sufficient.

• For a given dimension n, the largest number of vectors that
could be used while remaining linearly independent (known as
the maximal set) is 2n.

42

5. Generalized Pattern Search

• Conversely, the minimum number of possible vectors needed to
span the space (known as the minimal set) is n+1.

• These sizes are necessary but not sufficient conditions.

• Some algorithms randomly generate a positive spanning set,
whereas other algorithms require the user to specify a set based
on knowledge of the problem.

• The positive spanning set need not be fixed throughout the
optimization.

• A common default for a maximal set is the set of coordinate
directions ± Ƹ𝑒𝑖.

43

5. Generalized Pattern Search

• In three dimensions, this would be:

• A potential default minimal set is the positive coordinate
directions + Ƹ𝑒𝑖 and a vector filled with -1 (or more generally, the
negative sum of the other vectors).

• As an example in three dimensions:

𝒟 = 𝑑1, … . , 𝑑6 =

𝑑1 = 1,0,0

𝑑2 = 0,1,0

𝑑3 = 0,0,1

𝑑4 = −1,0,0

𝑑5 = 0, −1,0

𝑑6 = 0,0, −1

(5.08)

44

5. Generalized Pattern Search

• Figure 5.07 shows an example maximal set (four vectors) and
minimal set (three vectors) for a two-dimensional problem.

𝒟 = 𝑑1, … . , 𝑑4 =

𝑑1 = 1,0,0

𝑑2 = 0,1,0

𝑑3 = 0,0,1

𝑑4 = −1, −1, −1

(5.09)

Figure 5.07 A maximal set of positive spanning vectors in two dimensions

(left) and a minimal set (right).

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

45

5. Generalized Pattern Search

• These direction vectors are then used to create a mesh.

• Given a current centre point xk, which is the best point found so
far, and a mesh size k, the mesh is created as follows:

• For example, in two dimensions, if the current point is xk=[1,1],
the mesh size is k =0.5, and we use the coordinate directions
for d, then the mesh points would be
{[1,1.5],[1,0.5],[0.5,1],[1.5,1],}.

• The evaluation of points in the mesh is called polling or a poll.

• In the coordinate search example, every point in the mesh is
evaluated, which is usually inefficient.

• More typically, opportunistic polling is used, which terminates
polling at the first point that offers an improvement.

𝑥𝑘 = ∆𝑘𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈ 𝒟 (5.10)

46

5. Generalized Pattern Search

• Figure 5.08 shows a two-dimensional example where the order
of evaluation is d1=[1,0], d2=[0,1], d3=[-1,0], d4=[0,-1].

• Because we found an improvement at d2, we do not continue
evaluating d3 and d4.

• Opportunistic polling may not yield the best point in the mesh,
but the improvement in efficiency is usually worth the trade-off.

Figure 5.08 A two-dimensional example of opportunistic polling with

d1=[1,0], d2=[0,1], d3=[-1,0], d4=[0,-1]. An improvement in f was found at

d2, so we do not evaluate d3 and d4 (shown with a faded colour). S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

47

5. Generalized Pattern Search

• Some algorithms add a user option for utilizing a full poll, in
which case all points in the mesh are evaluated.

• If more than one point offers a reduction, the best one is
accepted.

• Another approach that is sometimes used is called dynamic
polling.

• In this approach, a successful poll reorders the direction vectors
so that the direction that was successful last time is checked
first in the next poll.

• A key feature of GPS is its use of two phases: a search phase and
a poll phase.

• The search phase is intended to be global, whereas the poll
phase is local, as discussed previously.

48

5. Generalized Pattern Search

• The search phase is intended to be flexible and is not specified
by the GPS algorithm.

• Common options for the search phase include the following:

– No search phase

– A mesh search, similar to polling but with large spacing across the
domain

– An alternative solver, such as Nelder–Mead or a genetic algorithm

– A surrogate model, which could then use any number of solvers
that include gradient-based methods. This approach is often used
when the function is expensive, and a lower-fidelity surrogate can
guide the optimizer to promising regions of the larger design
space.

– Random evaluation using a space-filling method

49

5. Generalized Pattern Search

• The type of search can even change throughout the
optimization.

• Like the polling phase, the goal of the search phase is to find a
better point (i.e., f(xk+1)<f(xk)) but within a broader domain.

• We begin with a search at every iteration.

• If the search fails to produce a better point, we continue with a
poll.

• If a better point is identified in either phase, the iteration ends,
and we begin a new search.

• In some variants of this algorithm, a successful poll is followed
by another poll.

• Thus, at each iteration, a search and a poll, just a search, or just
a poll might be performed.

50

5. Generalized Pattern Search

• We describe one option for a search procedure based on the
same mesh ideas as the polling step.

• The concept is to extend the mesh throughout the entire
domain, as shown in Fig. 5.09.

Figure 5.09 Meshing strategy extended across the domain. The same

directions (and potentially spacing) are repeated at each mesh point, as

indicated by the lighter arrows throughout the entire domain.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

51

5. Generalized Pattern Search

• In this example, the mesh size k is shared between the search
and poll phases.

• However, it is usually more effective if these phases are
independent.

• Mathematically, the global mesh can be defined as the set

where D is a matrix, whose columns contain the basis vectors d.

• Vector z consists of nonnegative integers, and we consider all
possible combinations of integers that fall within the bounds of
the domain.

• A fixed number of search evaluation points are chosen and
points are randomly selected from the global mesh for the
search strategy.

𝐺 = 𝑥𝑘 + ∆𝑘𝐷𝑧 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧𝑖 ∈ 𝒵+
(5.11)

52

5. Generalized Pattern Search

• If improvement is found among that set, then we recentre xk+1

at this improved point, grow the mesh (k +1>k), and end the
iteration (and then restart the search).

• A simple search phase along these lines is described in
Algorithm 5.2.

• Termination is often triggered simply by a user-specified
maximum number of iterations.

• However, other convergence criteria are sometimes used, such
as a threshold on mesh size or a threshold on the improvement
in the function value across multiple iterations.

• The method can handle linear and nonlinear constraints.

• For linear constraints, one effective strategy is to change the
positive spanning directions so that they align with any linear
constraints that are nearby (Fig. 5.10).

53

5. Generalized Pattern Search

• For nonlinear constraints, penalty approaches (Section 10) are
applicable, although the filter method is another effective
approach.

• An overview of a generalized pattern-search algorithm is shown
in Algorithm 5.3.

Figure 5.10 Mesh direction changed during optimization to align with linear

constraints when close to the constraint.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

linear constraint

54

5. Generalized Pattern Search

Algorithm 5.2: An example search phase for GPS

55

5. Generalized Pattern Search

Algorithm 5.3: Generalized Pattern Search

56

5. Generalized Pattern Search

Example 5.2: Minimization of a multimodal function with GPS.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.11

Convergence

history of a

GPS

algorithm on

the

multimodal

Jones

function.

57

6. DIRECT Algorithm

• The DIRECT algorithm is different from the other gradient-free
optimization algorithms in this chapter in that it is based on
mathematical arguments.

• This is a deterministic method guaranteed to converge to the
global optimum under conditions that are not too restrictive
(although it might require a prohibitive number of function
evaluations).

• One way to ensure that we find the global optimum within a
finite design space is by dividing this space into a regular
rectangular grid and evaluating every point in this grid.

• This is called an exhaustive search, and the precision of the
minimum depends on how fine the grid is.

• The cost of this brute-force strategy is high and goes up
exponentially with the number of design variables.

58

6. DIRECT Algorithm

• The DIRECT method relies on a grid, but it uses an adaptive
meshing scheme that dramatically reduces the cost.

• It starts with a single n-dimensional hypercube that spans the
whole design space - like many other gradient-free methods,
DIRECT requires upper and lower bounds on all the design
variables.

• Each iteration divides this hypercube into smaller ones and
evaluates the objective function at the centre of each of these.

• At each iteration, the algorithm only divides rectangles
determined to be potentially optimal.

• The fundamental strategy in the DIRECT method is how it
determines this subset of potentially optimal rectangles, which
is based on the mathematical concept of Lipschitz continuity.

59

6. DIRECT Algorithm

• We start by explaining Lipschitz continuity and then describe
an algorithm for finding the global minimum of a one-
dimensional function using this concept - Shubert’s algorithm.

• Although Shubert’s algorithm is not practical in general, it will
help us understand the mathematical rationale for the DIRECT
algorithm.

• Then we explain the DIRECT algorithm for one-dimensional
functions before generalizing it for n dimensions.

60

6. DIRECT Algorithm

6.1. Lipschitz constant

• Consider the single-variable function f(x) shown in Fig. 5.12.

• For a trial point x*, a cone is drawn with slope L by drawing the
lines to the left and right, respectively:

Figure 5.12 From a given trial point x* we can draw a cone with slope L (left). For a function to be

Lipschitz continuous, we need all cones with slope L to lie under the function for all points in the

domain (right).

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

𝑓+ 𝑥 = 𝑓 𝑥∗ + 𝐿(𝑥 − 𝑥∗)

𝑓− 𝑥 = 𝑓 𝑥∗ − 𝐿(𝑥 − 𝑥∗)
(5.12)

(5.13)

61

6. DIRECT Algorithm

6.1. Lipschitz constant

• This cone is shown in Fig. 5.12 (left), as well as cones
corresponding to other values of L.

• A function f is said to be Lipschitz continuous if there is a cone
slope L such that the cones for all possible trial points in the
domain remain under the function.

• This means that there is a positive constant k such that

where D is the function domain.

• Graphically, this condition means a cone with slope L can be
drawn from any trial point evaluation f(x*) such that the
function is always bounded by the cone, as shown in Fig. 5.12
(right).

𝑓 𝑥 − 𝑓 𝑥∗ ≤ 𝐿 𝑥 − 𝑥∗ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑥∗ ∈ 𝐷 (5.14)

62

6. DIRECT Algorithm

6.1. Lipschitz constant

• Any L that satisfies Eq. 5.14 is a Lipschitz constant for the
corresponding function.

63

6. DIRECT Algorithm

6.2. Shubert’s algorithm

• If a Lipschitz constant for a single-variable function is known,
Shubert’s algorithm can find the global minimum of that
function.

• Because the Lipschitz constant is not available in the general
case, the DIRECT algorithm is designed to not require this
constant.

• However, we explain Shubert’s algorithm first because it
provides some of the basic concepts used in the DIRECT
algorithm.

• Shubert’s algorithm starts with a domain within which we want
to find the global minimum - [a,b] in Fig. 5.13.

• Using the property of the Lipschitz constant L defined in Eq.
5.14, we know that the function is always above a cone of slope
L evaluated at any point in the domain.

64

6. DIRECT Algorithm

6.2. Shubert’s algorithm

Figure 5.13 Shubert’s algorithm

requires an initial domain and a

valid Lipschitz constant and then

increases the lower bound of the

global minimum with each

successive iteration.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

65

6. DIRECT Algorithm

6.2. Shubert’s algorithm

• Shubert’s algorithm starts by sampling the endpoints of the
interval within which we want to find the global minimum
([a,b] in Fig. 5.13).

• A first lower bound on the global minimum is established by
finding the cone’s intersection (x1 in Fig. 5.13, k=0) for the
extremes of the domain.

• The function is evaluated at x1 and a cone can be drawn about
this point to find two more intersections (x2 and x3).

• Because these two points always intersect at the same objective
lower bound value, they both need to be evaluated.

• Each subsequent iteration of Shubert’s algorithm adds two new
points to either side of the current point.

• These two points are evaluated, and the lower bounding
function is updated with the resulting new cones.

66

6. DIRECT Algorithm

6.2. Shubert’s algorithm

• We then iterate by finding the two points that minimize the new
lower bounding function, evaluating the function at these
points, updating the lower bounding function, and so on.

• The lowest bound on the function increases at each iteration
and ultimately converges to the global minimum.

• At the same time, the segments in x decrease in size.

• The lower bound can switch from distinct regions as the lower
bound in one region increases beyond the lower bound in
another region.

• The two significant shortcomings of Shubert’s algorithm are
that

1. a Lipschitz constant is usually not available for a general function

2. it is not easily extended to n dimensions

• The DIRECT algorithm addresses these two shortcomings.

67

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• Before explaining the n-dimensional DIRECT algorithm, we
introduce the one-dimensional version based on principles
similar to those of the Shubert algorithm.

• Like Shubert’s method, DIRECT starts with the domain [a,b]

• However, instead of sampling the endpoints a and b, it samples
the midpoint.

• Consider the closed domain [a,b] shown in Fig. 5.14 (left).

• For each segment, the objective function is evaluated at the
segment’s midpoint.

• In the first segment, which spans the whole domain, the
midpoint is c0=(a+b)/2.

• Assuming some value of L, which is not known and will not be
needed, the lower bound on the minimum would be f(c)-L(b-
a)/2.

68

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• We want to increase this lower bound on the function
minimum by dividing this segment further.

• To do this in a regular way that reuses previously evaluated
points and can be repeated indefinitely, we divide it into three
segments, as shown in Fig. 5.14 (right).

Figure 5.14 The DIRECT algorithm evaluates the middle point (left), and each successive

iteration trisects the segments that have the greatest potential (right). S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

69

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• Now we have increased the lower bound on the minimum.

• Unlike the Shubert algorithm, the lower bound is a
discontinuous function across the segments, as shown in Fig.
5.14 (right).

• Instead of continuing to divide every segment into three other
segments, we only divide segments selected according to a
potentially optimal criterion.

• To better understand this criterion, consider a set of segments
[ai,bi] at a given DIRECT iteration, where segment i has a half-
length di=(bi-ai)/2 and a function value f(ci) evaluated at the
segment centre ci=(ai+bi)/2.

• If we plot f(ci) versus di for a set of segments, we get the pattern
shown in Fig. 5.15.

70

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• The overall rationale for the potentially optimal criterion is that
two metrics quantify this potential: the size of the segment and
the function value at the centre of the segment.

• The larger the segment is, the greater the potential for that
segment to contain the global minimum.

• The lower the function value, the greater that potential is as
well.

Figure 5.15 Potentially optimal segments

in the DIRECT algorithm are identified

by the lower convex hull of this plot. S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

71

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• For a set of segments of the same size, we know that the one
with the lowest function value has the best potential and should
be selected.

• If two segments have the same function value and different
sizes, we should select the one with the largest size.

• For a general set of segments with various sizes and value
combinations, there might be multiple segments that can be
considered potentially optimal.

• Potentially optimal segments are identified as follows.

• If we draw a line with a slope corresponding to a Lipschitz
constant L from any point in Fig. 5.15, the intersection of this
line with the vertical axis is a bound on the objective function
for the corresponding segment.

72

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• Therefore, the lowest bound for a given L can be found by
drawing a line through the point that achieves the lowest
intersection.

• However, L is not known, and we do not want to assume a value
because we do not want to bias the search.

• If L were high, it would favour dividing the larger segments.

• Low values of L would result in dividing the smaller segments.

• The DIRECT method hinges on considering all possible values
of L, effectively eliminating the need for this constant.

• To eliminate the dependence on L, we select all the points for
which there is a line with slope L that does not go above any
other point.

73

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• This corresponds to selecting the points that form a lower
convex hull, as shown by the piecewise linear function in Fig.
5.15.

• This establishes a lower bound on the function for each
segment size.

• Mathematically, a segment j in the set of current segments S is
said to be potentially optimal if there is a L≥0 such that

where fmin is the best current objective function value, and  is a
small positive parameter.

• The first condition corresponds to finding the points in the
lower convex hull mentioned previously.

𝑓 𝑐𝑗 − 𝐿𝑑𝑗 ≤ 𝑓 𝑐𝑖 − 𝐿𝑑𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆

𝑓 𝑐𝑗 − 𝐿𝑑𝑗 ≤ 𝑓𝑚𝑖𝑛 − 𝜀 𝑓𝑚𝑖𝑛

(5.15)

(5.16)

74

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• The second condition in Eq. 5.16 ensures that the potential
minimum is better than the lowest function value found so far
by at least a small amount.

• This prevents the algorithm from becoming too local, wasting
function evaluations in search of smaller function
improvements.

• The parameter  balances the search between local and global.

• A typical value is  =10-4, and its range is usually such that
10-7≤ ≤ 10-2.

• There are efficient algorithms for finding the convex hull of an
arbitrary set of points in two dimensions, such as the Jarvis
march.

75

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• These algorithms are more than we need because we only
require the lower part of the convex hull, so the algorithms can
be simplified for our purposes.

• As in the Shubert algorithm, the division might switch from one
part of the domain to another, depending on the new function
values.

• Compared with the Shubert algorithm, the DIRECT algorithm
produces a discontinuous lower bound on the function values,
as shown in Fig. 5.16.

Figure 5.16 The lower bound for the

DIRECT method is discontinuous at the

segment boundaries. S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

76

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• The n-dimensional DIRECT algorithm is similar to the one-
dimensional version but becomes more complex.

• The main difference is that we deal with hyperrectangles
instead of segments.

• A hyperrectangle can be defined by its centre-point position c in
n-dimensional space and a half-length in each direction i, ei, as
shown in Fig. 5.17.

• The DIRECT algorithm assumes that the initial dimensions are
normalized so that we start with a hypercube.

Figure 5.17 Hyperrectangle in three dimensions,

where d is the maximum distance between the

centre and the vertices, and ei is the half-length in

each direction i.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

77

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• To identify the potentially optimal rectangles at a given
iteration, we use exactly the same conditions in Eqs. 5.15 and
5.16, but ci is now the centre of the hyperrectangle, and di is the
maximum distance from the centre to a vertex.

• The explanation illustrated in Fig. 5.15 still applies in the n-
dimensional case and still involves simply finding the lower
convex hull of a set of points with different combinations of f
and d.

• The main complication introduced in the n-dimensional case is
the division (trisection) of a selected hyperrectangle.

• The question is which directions should be divided first.

78

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• The logic to handle this in the DIRECT algorithm is to prioritize
reducing the dimensions with the maximum length, ensuring
that hyperrectangles do not deviate too much from the
proportions of a hypercube.

• First, we select the set of the longest dimensions for division
(there are often multiple dimensions with the same length).

• Among this set of the longest dimensions, we select the
direction that has been divided the least over the whole history
of the search.

• If there are still multiple dimensions in the selection, we simply
select the one with the lowest index.

• Algorithm 5.4 details the full algorithm.

79

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• Figure 5.18 shows the first three iterations for a two-
dimensional example and the corresponding visualization of
the conditions expressed in Eqs. 5.15 and 5.16.

• We start with a square that contains the whole domain and
evaluate the centre point.

• The value of this point is plotted on the f–d plot on the far right.

• The first iteration trisects the starting square along the first
dimension and evaluates the two new points.

• The values for these three points are plotted in the second
column from the right in the f–d plot, where the centre point is
reused, as indicated by the arrow and the matching colour.

• At this iteration, we have two points that define the convex hull.

80

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

Figure 5.18 DIRECT iterations

for two-dimensional case (left)

and corresponding identification

of potentially optimal rectangles

(right).

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

81

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• In the second iteration, we have three rectangles of the same
size, so we divide the one with the lowest value and evaluate the
centres of the two new rectangles (which are squares in this
case).

• We now have another column of points in the f–d plot
corresponding to a smaller d and an additional point that
defines the lower convex hull.

• Because the convex hull now has two points, we trisect two
different rectangles in the third iteration.

82

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

Algorithm 5.4: DIRECT in n-dimensions

83

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

Example 5.3: Minimization of a multimodal function (Jones
function) with DIRECT.

Figure 5.19 Potentially optimal

rectangles for the DIRECT

iterations shown in Fig. 5.20.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.20 The DIRECT method

quickly determines the region with the

global minimum of the Jones function

after briefly exploring the regions with

other minima.

84

7. Genetic algorithms

• Genetic algorithms (GAs) are the most well-known and widely
used type of evolutionary algorithm.

• They were also among the earliest to have been developed.

• Like many evolutionary algorithms, GAs are population based.

• The optimization starts with a set of design points (the
population) rather than a single starting point, and each
optimization iteration updates this set in some way.

• Each iteration in the GA is called a generation, and each
generation has a population with np points.

• A chromosome is used to represent each point and contains the
values for all the design variables, as shown in Fig. 5.21.

• Each design variable is represented by a gene.

• As we will see later, there are different ways for genes to
represent the design variables.

85

7. Genetic algorithms

• GAs evolve the population using an algorithm inspired by
biological reproduction and evolution using three main steps:

1. selection

2. crossover

3. mutation

• Selection is based on natural selection, where members of the
population that acquire favourable adaptations are more likely
to survive longer and contribute more to the population gene
pool.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.21 Each GA iteration involves a population

of design points, where each design is represented by a

chromosome, and each design variable is represented

by a gene.

86

7. Genetic algorithms

• Crossover is inspired by chromosomal crossover,
which is the exchange of genetic material between
chromosomes during sexual reproduction.

• Mutation mimics genetic mutation, which is a
permanent change in the gene sequence that
occurs naturally.

• Algorithm 5.5 and Fig. 5.22 show how these three
steps perform optimization.

• Although most GAs follow this general procedure,
there is a great degree of flexibility in how the
steps are performed, leading to many variations in
GAs.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.22 At each GA iteration, pairs of parents are selected from the population

to generate the offspring through crossover, which becomes the new population.

87

7. Genetic algorithms

• For example, there is no single method specified for the
generation of the initial population, and the size of that
population varies.

• Similarly, there are many possible methods for selecting the
parents, generating the offspring, and selecting the survivors.

• Here, the new population (Pk+1) is formed exclusively by the
offspring generated from the crossover.

• However, some GAs add an extra selection process that selects
a surviving population of size np among the population of
parents and offspring.

88

7. Genetic algorithms

Algorithm 5.5: Genetic algorithm.

89

7. Genetic algorithms

• In addition to the flexibility in the various operations, GAs use
different methods for representing the design variables.

• The design variable representation can be used to classify
genetic algorithms into two broad categories: binary-encoded
and real-encoded genetic algorithms.

• Binary-encoded algorithms use bits to represent the design
variables, whereas the real-encoded algorithms keep the same
real value representation used in most other algorithms.

• The details of the operations in Algorithm 5.5 depend on
whether we are using one or the other representation, but the
principles remain the same.

• In the rest of this section, we describe a particular way of
performing these operations for each of the possible design
variable representations.

90

7. Genetic algorithms

7.1. Binary-encoded Genetic Algorithms

• The original GAs were based on binary encoding because they
more naturally mimic chromosome encoding.

• Binary-coded GAs are applicable to discrete or mixed-integer
problems.

• When using binary encoding, we represent each variable as a
binary number with m bits.

• Each bit in the binary representation has a location, i, and a
value, bi (which is either 0 or 1).

• To represent a real-valued variable, a finite interval 𝑥 ∈ 𝑥, 𝑥

needs to be considered first, which can then be divided into 2m-
1 intervals.

• The size of the interval is given by

(5.17)∆𝑥 =
𝑥 − 𝑥

2𝑚 − 1

91

7. Genetic algorithms

7.1. Binary-encoded Genetic Algorithms

• To have a more precise representation, more bits must be used.

• When using binary-encoded GAs, we do not need to encode the
design variables because they are generated and manipulated
directly in the binary representation.

• Still, it is necessary to decode them before providing them to
the evaluation function.

• To decode a binary representation, we use

(5.18)𝑥 = 𝑥 + ෍

𝑖=0

𝑚−1

𝑏𝑖2𝑖∆𝑥

92

7. Genetic algorithms

7.1. Binary-encoded Genetic Algorithms

Example 5.4: Binary representation of a real number.

• Suppose we have a continuous design variable x that we want to
represent in the interval [-20,80] using 12 bits. Then, we have
212-1=4095 intervals, and using Eq. 5.17, we get x=0.0244.
This interval is the error in this finite-precision representation.

• For the following sample binary representation:

we can use Eq. 5.18 to compute the equivalent real number, which
turns out to be x≈32.55.

93

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.1. Initial population

• The first step in a genetic algorithm is to generate an initial set
(population) of points.

• As a rule of thumb, the population size should be approximately
one order of magnitude larger than the number of design
variables, and this size should be tuned.

• One popular way to choose the initial population is to do it at
random.

• Using binary encoding, we can assign each bit in the
representation of the design variables a 50 percent chance of
being either 1 or 0.

• This can be done by generating a random number 0≤r≤1 and
setting the bit to 0 if r≤0.5 and 1 if r>0.5.

94

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.1. Initial population

• For a population of size np, with n design variables, where each
variable is encoded using m bits, the total number of bits that
needs to be generated is np×n×m.

• To achieve better spread in a larger dimensional space, the
sampling methods described in Chapter 6.? are generally more
effective than random populations.

• Although we then need to evaluate the function across many
points (a population), these evaluations can be performed in
parallel.

95

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• In this step, we choose points from the population for
reproduction in a subsequent step (called a mating pool).

• On average, it is desirable to choose a mating pool that
improves in fitness (thus mimicking the concept of natural
selection), but it is also essential to maintain diversity.

• In total, we need to generate np/2 pairs.

• The simplest selection method is to randomly select two points
from the population until the requisite number of pairs is
complete.

• This approach is not particularly effective because there is no
mechanism to move the population toward points with better
objective functions.

96

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• Tournament selection is a better method that randomly pairs
up np points and selects the best point from each pair to join the
mating pool.

• The same pairing and selection process is repeated to create
np/2 more points to complete a mating pool of np points.

97

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

Example 5.5: Tournament selection process.

• Figure 5.23 illustrates the process with a small population.
Each member of the population ends up in the mating pool
zero, one, or two times, with better points more likely to appear
in the pool. The best point in the population will always end up
in the pool twice, whereas the worst point in the population is
always eliminated.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.23 Tournament selection example.

98

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• Another standard method is roulette wheel selection.

• This concept is patterned after a roulette wheel used in a
casino.

• It assigns better points to a larger sector on the roulette wheel
to have a higher probability of being selected.

• First, the objective function for all the points in the population
must be converted to a fitness value because the roulette wheel
needs all positive values and is based on maximizing rather
than minimizing.

• To achieve that, the following conversion to fitness is first
performed:

(5.19)𝐹 =
−𝑓𝑖 + ∆𝐹

max(1, ∆𝐹 − 𝑓𝑙𝑜𝑤)

99

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

where F= 1.1fhigh-o.1flow is based on the highest and lowest
function values in the population, and the denominator is
introduced to scale the fitness.

• Then, to find the sizes of the sectors in the roulette wheel
selection, we take the normalized cumulative sum of the scaled
fitness values to compute an interval for each member in the
population j as

(5.20)𝑆𝑗 =
σ𝑖=1

𝑗
𝐹𝑖

σ
𝑖=1

𝑛𝑝 𝐹𝑖

100

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• We can now create a mating pool of np points by turning the
roulette wheel np times.

• We do this by generating a random number 0 ≤ r ≤ 1 at each
turn.

• The jth member is copied to the mating pool if

• This ensures that the probability of a member being selected for
reproduction is proportional to its scaled fitness value.

(5.21)𝑆𝑗−1 ≤ 𝑟 ≤ 𝑆𝑗

101

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

Example 5.6: Tournament selection process.

• Assume that F=[5,10,20,45]. Then S=[0.25,0.3125,0.875,1],
which divides the “wheel” into four segments, shown
graphically in Fig. 5.24. We would then draw four random
numbers (say, 0.6, 0.2, 0.9, 0.7), which would correspond to
the following np/2 pairs: (x3 and x1), (x4 and x3).

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.24 Roulette wheel selection example.

102

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.3. Crossover

• In the reproduction operation, two
points (offspring) are generated from a
pair of points (parents).

• Various strategies are possible in
genetic algorithms.

• Single-point crossover usually involves
generating a random integer 1 ≤ k ≤ m-
1 that defines the crossover point.

• This is illustrated in Fig. 5.25.

• For one of the offspring, the first k bits
are taken from parent 1 and the
remaining bits from parent 2.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1Figure 5.25 The

crossover point

determines which parts

of the chromosome

from each parent get

inherited by each

offspring.

103

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.3. Crossover

• For the second offspring, the first k bits are taken from parent 2
and the remaining ones from parent 1.

• Various extensions exist, such as two-point crossover or n-point
crossover.

104

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.4. Mutation

• Mutation is a random operation performed to change the
genetic information and is needed because even though
selection and reproduction effectively recombine existing
information, occasionally some useful genetic information
might be lost.

• The mutation operation protects against such irrecoverable loss
and introduces additional diversity into the population.

• When using bit representation, every bit is assigned a small
permutation probability, say p=0.005~0.05.

• This is done by generating a random number 0 ≤ r ≤ 1 for each
bit, which is changed if r < p.

105

7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.4. Mutation

• An example is illustrated in Fig. 5.26.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.26 Mutation randomly switches some of the bits with low

probability.

106

7. Genetic algorithms

7.2. Real-encoded Genetic Algorithms

• As the name implies, real-encoded GAs represent the design
variables in their original representation as real numbers.

• This has several advantages over the binary-encoded approach.

• First, real encoding represents numbers up to machine
precision rather than being limited by the initial choice of string
length required in binary encoding.

• Second, it avoids the “Hamming cliff” issue of binary encoding,
which is caused by the fact that many bits must change to move
between adjacent real numbers (e.g., 0111 to 1000).

• Third, some real-encoded GAs can generate points outside the
design variable bounds used to create the initial population; in
many problems, the design variables are not bounded.

• Finally, it avoids the burden of binary coding and decoding.

107

7. Genetic algorithms

7.2. Real-encoded Genetic Algorithms

• The main disadvantage is that integer or discrete variables
cannot be handled straightforwardly.

• For continuous problems, a real-encoded GA is generally more
efficient than a binary-encoded GA.

• We now describe the required changes to the GA operations in
the real-encoded approach.

108

7. Genetic algorithms
7.2. Real-encoded Genetic Algorithms

7.2.1. Initial population

• The most common approach is to pick the np points using
random sampling within the provided design bounds.

• Each member is often chosen at random within some initial
bounds.

• For each design variable xi, with bounds such that 𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖,

we could use

where r is a random number such that 0 ≤ r ≤ 1.

• Again, the sampling methods described in Chapter 6.? are more
effective for higher dimensional spaces.

(5.22)𝑥𝑖 = 𝑥𝑖 + 𝑟(𝑥𝑖 − 𝑥𝑖)

109

7. Genetic algorithms
7.2. Real-encoded Genetic Algorithms

7.2.2. Selection

• The selection operation does not depend on the design variable
encoding.

• Therefore, we can use one of the selection approaches described
for the binary-encoded GA: tournament or roulette wheel
selection.

110

7. Genetic algorithms
7.2. Real-encoded Genetic Algorithms

7.2.3. Crossover

• When using real encoding, the term crossover does not
accurately describe the process of creating the two offspring
from a pair of points.

• Instead, the approaches are more accurately described as a
blending, although the name crossover is still often used.

• There are various options for the reproduction of two points
encoded using real numbers.

• A standard method is linear crossover, which generates two or
more points in the line defined by the two parent points.

• One option for linear crossover is to generate the following two

• points:

(5.23)
𝑥𝑐1

= 0.5𝑥𝑝1
+ 0.5𝑥𝑝2

𝑥𝑐2
= 2𝑥𝑝2

− 0.5𝑥𝑝1

111

7. Genetic algorithms
7.2. Real-encoded Genetic Algorithms

7.2.3. Crossover

where parent 2 is more fit than parent 1
(f(xp2)<f(xp1)).

• An example of this linear crossover
approach is shown in Fig. 5.27, where
we can see that child 1 is the average
of the two parent points, whereas
child 2 is obtained by extrapolating in
the direction of the “fitter” parent.

• Another option is a simple crossover
like the binary case where a random
integer is generated to split the
vectors - for example, with a split
after the first index:

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.27 Linear

crossover produces two new

points along the line defined

by the two parent points.

112

7. Genetic algorithms
7.2. Real-encoded Genetic Algorithms

7.2.3. Crossover

• This simple crossover does not generate as much diversity as
the binary case and relies more heavily on effective mutation.

• Many other strategies have been devised for real-encoded GAs.

(5.24)

𝑥𝑝1
= 𝑥1, 𝑥2, 𝑥3, 𝑥4

𝑥𝑝2
= 𝑥5, 𝑥6, 𝑥7, 𝑥8

⇓
𝑥𝑐1

= 𝑥1, 𝑥6, 𝑥7, 𝑥8

𝑥𝑐2
= 𝑥5, 𝑥2, 𝑥3, 𝑥4

113

7. Genetic algorithms
7.2. Real-encoded Genetic Algorithms

7.2.4. Mutation

• As with a binary-encoded GA, mutation should only occur with
a small probability (e.g., p=0.0005~0.05).

• However, rather than changing each bit with probability p, we
now change each design variable with probability p.

• Many mutation methods rely on random variations around an
existing member, such as a uniform random operator:

where ri is a random number between 0 and 1, and i is a
preselected maximum perturbation in the ith direction.

• Many nonuniform methods exist as well.

(5.25)𝑥𝑛𝑒𝑤𝑖
= 𝑥𝑖 + 𝑟𝑖 − 0.5 ∆𝑖 , 𝑓𝑜𝑟 𝑖 = 1, … 𝑛

114

7. Genetic algorithms
7.2. Real-encoded Genetic Algorithms

7.2.4. Mutation

• For example, we can use a normal probability distribution

where i is a preselected standard deviation, and random samples
are drawn from the normal distribution.

• During the mutation operations, bound checking is necessary to
ensure the mutations stay within the lower and upper limits.

(5.26)𝑥𝑛𝑒𝑤𝑖
= 𝑥𝑖 + 𝒩 0, 𝜎𝑖 , 𝑓𝑜𝑟 𝑖 = 1, … 𝑛

115

7. Genetic algorithms

Example 5.7: Genetic algorithm applied to the bean function.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.28 Evolution of the population using a bit-encoded GA to minimize the bean function, where

k is the generation number.

116

7. Genetic algorithms

Example 5.7: Genetic algorithm applied to the bean function.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.29 Evolution of the population using a real-encoded GA to minimize the bean function,

where k is the generation number.

117

7. Genetic algorithms

7.3. Constraint handling

• Various approaches exist for handling constraints.

• Like the Nelder–Mead method, we can use a penalty method
(e.g., augmented Lagrangian, linear penalty).

• However, there are additional options for GAs.

• In the tournament selection, we can use other selection criteria
that do not depend on penalty parameters.

• One such approach for choosing the best selection among two
competitors is as follows:

1. Prefer a feasible solution.

2. Among two feasible solutions, choose the one with a better
objective.

3. Among two infeasible solutions, choose the one with a smaller
constraint violation.

• This concept is a lot like the filter methods.

118

7. Genetic algorithms

7.4. Convergence

• Rigorous mathematical convergence criteria, like those used in
gradient-based optimization, do not apply to GAs.

• The most common way to terminate a GA is to specify a
maximum number of iterations, which corresponds to a
computational budget.

• Another similar approach is to let the algorithm run indefinitely
until the user manually terminates the algorithm, usually by
monitoring the trends in population fitness.

• A more automated approach is to track a running average of the
population’s fitness.

• However, it can be challenging to decide what tolerance to
apply to this criterion because we generally are not interested in
the average performance.

119

7. Genetic algorithms

7.4. Convergence

• A more direct metric of interest is the fitness of the best
member in the population.

• However, this can be a problematic criterion because the best
member can disappear as a result of crossover or mutation.

• To avoid this and to improve convergence, many GAs employ
elitism.

• This means that the fittest population member is retained to
guarantee that the population does not regress.

• Even without this behaviour, the best member often changes
slowly, so the user should not terminate the algorithm unless
the best member has not improved for several generations.

120

8. Particle Swarm Optimization

• Like a GA, particle swarm optimization (PSO) is a stochastic
population-based optimization algorithm based on the concept
of “swarm intelligence”.

• Swarm intelligence is the property of a system whereby the
collective behaviours of unsophisticated agents interacting
locally with their environment cause coherent global patterns.

• In other words: dumb agents, properly connected into a swarm,
can yield smart results.

• The “swarm” in PSO is a set of design points (agents or
particles) that move in n-dimensional space, looking for the
best solution.

• Although these are just design points, the history for each point
is relevant to the PSO algorithm, so the term particle is
adopted.

121

8. Particle Swarm Optimization

• Each particle moves according to a velocity.

• This velocity changes according to the past objective function
values of that particle and the current objective values of the
rest of the particles.

• Each particle remembers the location where it found its best
result so far, and it exchanges information with the swarm
about the location where the swarm has found the best result so
far.

• The position of particle i for iteration k+1 is updated according
to

where t is a constant artificial time step.

(5.27)𝑥𝑘+1
(𝑖)

= 𝑥𝑘
(𝑖)

+ 𝑣𝑘+1
(𝑖)

∆𝑡

122

8. Particle Swarm Optimization

• The velocity for each particle is updated as follows:

• The first component in this update is the “inertia”, which
determines how similar the new velocity is to the velocity in the
previous iteration through the parameter .

• Typical values for the inertia parameter are in the interval
[0.8,1.2].

• A lower value of  reduces the particle’s inertia and tends
toward faster convergence to a minimum.

• A higher value of  increases the particle’s inertia and tends
toward increased exploration to potentially help discover
multiple minima.

(5.28)𝑣𝑘+1
(𝑖)

= 𝛼𝑣𝑘
(𝑖)

+ 𝛽
𝑥𝑏𝑒𝑠𝑡

(𝑖)
− 𝑥𝑘

(𝑖)

∆𝑡
+ 𝛾

𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑘
(𝑖)

∆𝑡

123

8. Particle Swarm Optimization

• Some methods are adaptive, choosing the value of  based on
the optimizer’s progress.

• The second term represents “memory” and is a vector pointing
toward the best position particle i has seen in all its iterations

so far, 𝑥𝑏𝑒𝑠𝑡
(𝑖)

.

• The weight in this term consists of a random number  in the
interval [0,max] that introduces a stochastic component to the
algorithm.

• Thus,  controls how much influence the best point found by
the particle so far has on the next direction.

• The third term represents “social” influence.

124

8. Particle Swarm Optimization

• It behaves similarly to the memory component, except that xbest
is the best point the entire swarm has found so far, and  is a
random number between [0,max] that controls how much of an
influence this best point has in the next direction.

• The relative values of  and  thus control the tendency toward
local versus global search, respectively.

• Both  max and  max are in the interval [0,] and are typically
closer to 2.

• Sometimes, rather than using the best point in the entire
swarm, the best point is chosen within a neighbourhood.

• Because the time step is artificial, we can eliminate it by
multiplying Eq. 5.28 by t to yield a step:

(5.29)∆𝑥𝑘+1
(𝑖)

= 𝛼∆𝑥𝑘
(𝑖)

+ 𝛽 𝑥𝑏𝑒𝑠𝑡
(𝑖)

− 𝑥𝑘
(𝑖)

+ 𝛾 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑘
(𝑖)

125

8. Particle Swarm Optimization

• We then use this step to update the particle position for the
next iteration:

• The three components of the update in Eq. 5.29 are shown in
Fig. 5.30 for a two-dimensional case.

(5.30)𝑥𝑘+1
(𝑖)

= 𝑥𝑘
(𝑖)

+ ∆𝑥𝑘+1
(𝑖)

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.30 Components of the PSO update.

126

8. Particle Swarm Optimization

• The first step in the PSO algorithm is to initialize the set of
particles (Algorithm 5.6).

• As with a GA, the initial set of points can be determined
randomly or can use a more sophisticated sampling strategy
(see Chapter 6.?).

• The velocities are also randomly initialized, generally using
some fraction of the domain size (𝑥 − 𝑥).

• The main loop in the algorithm computes the steps to be added
to each particle and updates their positions.

• Particles must be prevented from going beyond the bounds.

• If a particle reaches a boundary and has a velocity pointing out
of bounds, it is helpful to reset the velocity to zero or reorient it
toward the interior for the next iteration.

127

8. Particle Swarm Optimization

Algorithm 5.6: Particle swarm optimization algorithm.

128

8. Particle Swarm Optimization

• It is also helpful to impose a maximum velocity.

• If the velocity is too large, the updated positions are unrelated
to their previous positions, and the search is more random.

• The maximum velocity might also decrease across iterations to
shift from exploration toward exploitation.

• Several convergence criteria are possible, some of which are
similar to the Nelder–Mead algorithm and GAs.

• Examples of convergence criteria include the distance (sum or
norm) between each particle and the best particle, the best
particle’s objective function value changes for the last few
generations, and the difference between the best and worst
member.

129

8. Particle Swarm Optimization

• For PSO, another alternative is to check whether the velocities
for all particles (as measured by a metric such as norm or
mean) are below some tolerance.

• Some of these criteria that assume all the particles congregate
(distance, velocities) do not work well for multimodal
problems.

• In those cases, tracking only the best particle’s objective
function value may be more appropriate.

130

8. Particle Swarm Optimization

Example 5.8: PSO algorithm applied to the bean function.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.31 Sequence of particles at iterations : that minimizes the bean function.

131

9. Hybrid Metaheuristic Algorithms

• The hybridization of evolutionary algorithms (EA) is popular,
partly due to its better performance in handling noise,
uncertainty, vagueness, and imprecision.

• There are two prominent issues of EAs in solving global and
highly nonconvex optimization problems:

1. Premature convergence: The problem of premature convergence
results in the lack of accuracy of the final solution. The final
solution is a feasible solution close to the global optimal, often
regarded as satisfactory or close-to-optimal solution.

2. Slow convergence: Slow convergence means the solution quality
does not improve sufficiently quickly. It shows stagnation or
almost flatness on a convergence graph (either a single iteration
or the average of multiple iterations).

132

9. Hybrid Metaheuristic Algorithms

• Hybrid algorithms are two or more algorithms that run
together and complement each other to produce a profitable
synergy from their integration.

• These algorithms are commonly known as hybrid
metaheuristics (HMs) or hybrid algorithms (HA) for simplicity.

• Hybrid algorithms play a prominent role in improving the
search capability of algorithms.

• Hybridization aims to combine the advantages of each
algorithm to form a hybrid algorithm, while simultaneously
trying to minimize any substantial disadvantage.

• In general, the outcome of hybridization can usually make some
improvements in terms of either computational speed or
accuracy.

133

9. Hybrid Metaheuristic Algorithms

• See book chapter for further details:

– T. O. Ting, Xin-She Yang, Shi Cheng, Kaizhu Huang, “Hybrid
Metaheuristic Algorithms: Past, Present, and Future”, in book:
Recent Advances in Swarm Intelligence and Evolutionary
Computation, December 2015, DOI: 10.1007/978-3-319-13826-
8_4.

134

10. Penalty Methods

• The concept behind penalty methods is intuitive: to transform a
constrained problem into an unconstrained one by adding a
penalty to the objective function when constraints are violated.

• Penalty methods are no longer used directly in gradient-based
optimization algorithms because they have difficulty converging
to the true solution.

• However, these methods are still valuable because:

1. they are simple and thus ease the transition into understanding
constrained optimization

2. although not effective for gradient-based optimization, they are
still useful in some constrained gradient-free methods

3. they can be useful as merit functions in line search algorithms

135

10. Penalty Methods

• The penalized function can be written as

where (x) is a penalty function, and the scalar  is a penalty
parameter.

• This is similar in form to the Lagrangian, but one difference is
that a value for  is fixed in advance instead of solved for.

• We can use the unconstrained optimization techniques to

minimize መ𝑓 𝑥 .

• However, instead of just solving a single optimization problem,
penalty methods usually solve a sequence of problems with
different values of  to get closer to the actual constrained
minimum.

(5.31)መ𝑓 𝑥 = 𝑓(𝑥) + 𝜇𝜋(𝑥)

136

10. Penalty Methods

• We will see shortly why we need to solve a sequence of
problems rather than just one problem.

• Various forms for (x) can be used, leading to different penalty
methods.

• There are two main types of penalty functions:

– Exterior penalties, which impose a penalty only when constraints
are violated

– Interior penalty functions, which impose a penalty that increases
as a constraint is approached

• Figure 5.32 shows both interior and exterior penalties for a
two-dimensional function.

• The exterior penalty leads to slightly infeasible solutions,
whereas an interior penalty leads to a feasible solution but
underpredicts the objective.

137

10. Penalty Methods

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1Figure 5.32 Interior penalties tend to

infinity as the constraint is approached

from the feasible side of the constraint

(left), whereas exterior penalty functions

activate when the points are not feasible

(right). The minimum for both approaches

is different from the true constrained

minimum.

138

10. Penalty Methods

10.1. Exterior penalty method

• Of the many possible exterior penalty methods, we focus on two
of the most popular ones:

– quadratic penalties

– augmented Lagrangian method

• Quadratic penalties are continuously differentiable and
straightforward to implement, but they suffer from numerical
ill-conditioning.

• The augmented Lagrangian method is more sophisticated; it is
based on the quadratic penalty but adds terms that improve the
numerical properties.

• Many other penalties are possible, such as 1-norms, which are
often used when continuous differentiability is unnecessary.

139

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• For equality constrained problems, the quadratic penalty
method takes the form

where the semicolon denotes that  is a fixed parameter.

• The motivation for a quadratic penalty is that it is simple and
results in a function that is continuously differentiable.

• The factor of one half is unnecessary but is included by
convention because it eliminates the extra factor of two when
taking derivatives.

• The penalty is nonzero unless the constraints are satisfied
(hi=0), as desired.

(5.32)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) +
𝜇

2
෍

𝑖

𝑛ℎ

ℎ𝑖(𝑥)2

140

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• The value of the penalty parameter  must be chosen carefully.

• Mathematically, we recover the exact solution to the
constrained problem only as  tends to infinity (see Fig. 5.27).

• However, starting with a large value for  is not practical.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.33 Quadratic penalty for an

equality constrained one-dimensional

problem. The minimum of the

penalized function (black dots)

approaches the true constrained

minimum (blue circle) as the penalty

parameter  increases.

141

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• This is because the larger the value of , the larger the Hessian
condition number, which corresponds to the curvature varying
greatly with direction.

• This behaviour makes the problem difficult to solve
numerically.

• To solve the problem more effectively, we begin with a small
value of  and solve the unconstrained problem.

• We then increase  and solve the new unconstrained problem,
using the previous solution as the starting point.

• We repeat this process until the optimality conditions are
satisfied (or some other approximate convergence criteria are
satisfied), as outlined in Algoritm 5.7.

142

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

Algorithm 5.7: Exterior penalty method.

143

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• By gradually increasing  and reusing the solution from the
previous problem, we avoid some of the ill-conditioning issues.

• Thus, the original constrained problem is transformed into a
sequence of unconstrained optimization problems.

• There are three potential issues with the approach outlined in
Algorithm 5.7.

• Suppose the starting value for  is too low.

• In that case, the penalty might not be enough to overcome a
function that is unbounded from below, and the penalized
function has no minimum.

• The second issue is that we cannot practically approach) 𝜇 → ∞.

• Hence, the solution to the problem is always slightly infeasible.

144

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• The third issue has to do with the curvature of the penalized
function, which is directly proportional to .

• The extra curvature is added in a direction perpendicular to the
constraints, making the Hessian of the penalized function
increasingly ill-conditioned as  increases.

• Thus, the need to increase  to improve accuracy directly leads
to a function space that is increasingly challenging to solve.

145

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

Example 5.9: Quadratic penalty for equality constrained
problem.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 +
𝜇

2

1

2
𝑥1

2 + 𝑥2
2 − 1

2

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.34 Quadratic penalty for one equality constraint. The minimum of the penalized function

approaches the constrained minimum as the penalty parameter increases..

146

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

Example 5.9: Quadratic penalty for equality constrained problem
(continued).

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 +
𝜇

2

1

2
𝑥1

2 + 𝑥2
2 − 1

2

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.35 Error in optimal solution as compared to

true solution as a function of an increasing penalty

parameter.

147

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• The approach discussed so far handles only equality
constraints, but it can be extended to handle inequality
constraints.

• Instead of adding a penalty to both sides of the constraints, we
add the penalty when the inequality constraint is violated (i.e.,
when gj(x)>0).

• This behaviour can be achieved by defining a new penalty
function as

(5.33)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) +
𝜇

2
෍

𝑗

𝑛𝑔

𝑚𝑎𝑥 0, 𝑔𝑗(𝑥)
2

148

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• The only difference relative to the equality constraint penalty
shown in Fig. 5.33 is that the penalty is removed on the feasible
side of the inequality constraint, as shown in Fig. 5.36.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.36 Quadratic penalty for an

inequality constrained one-

dimensional problem. The minimum

of the penalized function approaches

the constrained minimum from the

infeasible side.

149

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

Example 5.10: Quadratic penalty for inequality constrained
problem.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 +
𝜇

2
𝑚𝑎𝑥 0,

1

2
𝑥1

2 + 𝑥2
2 − 1

2

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.37 Quadratic penalty for one inequality constraint. The minimum of the penalized function

approaches the constrained minimum from the infeasible side.

150

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• The inequality quadratic penalty can be used together with the
quadratic penalty for equality constraints if both types of
constraints need to be handled

• The two penalty parameters can be incremented in lockstep or
independently.

(5.34)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) +
𝜇ℎ

2
෍

𝑖

𝑛ℎ

ℎ𝑖(𝑥)2 +
𝜇𝑔

2
෍

𝑗

𝑛𝑔

𝑚𝑎𝑥 0, 𝑔𝑗(𝑥)
2

151

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• Scaling is also important for constrained problems.

• Similar to scaling the objective function, a good scaling rule of
thumb is to normalize such that each constraint function is of
order 1.

• For constraints, a natural scale is typically already defined by
the limits we provide.

• For example, instead of

a scaled version can be expressed as

(5.35)𝑔𝑗 𝑥 − 𝑔𝑚𝑎𝑥𝑗
≤ 0

(5.36)
𝑔𝑗 𝑥

𝑔𝑚𝑎𝑥𝑗

− 1 ≤ 0

152

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

• As explained previously, the quadratic penalty method requires
a large value of  for constraint satisfaction, but the large 
degrades the numerical conditioning.

• The augmented Lagrangian method helps alleviate this
dilemma by adding the quadratic penalty to the Lagrangian
instead of just adding it to the function.

• The augmented Lagrangian function for equality constraints is

• Unfortunately, the Lagrange multipliers cannot be solved for in
a penalty approach, so we need some way to estimate them.

• In other words, they are a parameter in this case, not a variable.

(5.37)መ𝑓 𝑥; 𝜆, 𝜇 = 𝑓(𝑥) + ෍

𝑗=1

𝑛ℎ

𝜆𝑖ℎ𝑖(𝑥) +
𝜇ℎ

2
෍

𝑗=1

𝑛ℎ

ℎ𝑖(𝑥)2

153

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

• To obtain an estimate of the Lagrange multipliers, we can
compare the optimality conditions for the augmented
Lagrangian,

to those of the actual Lagrangian,

which suggests the approximation

(5.38)∇𝑥
መ𝑓 𝑥; 𝜆, 𝜇 = ∇𝑓 𝑥 + ෍

𝑗=1

𝑛ℎ

𝜆𝑗 + 𝜇ℎ𝑗 𝑥 𝜆𝑗∇ℎ𝑗 = 0

(5.39)∇𝑥ℒ 𝑥∗, 𝜆∗ = ∇𝑓 𝑥∗ + ෍

𝑗=1

𝑛ℎ

𝜆𝑗
∗∇ℎ𝑗 𝑥∗ = 0

(5.40)𝜆𝑗
∗ ≈ 𝜆𝑗 + 𝜇ℎ𝑗

154

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

• Therefore, we update the vector of Lagrange multipliers based
on the current estimate of the Lagrange multipliers and
constraint values using

• The complete algorithm is shown in Algorithm 5.8.

(5.41)𝜆𝑘+1 = 𝜆𝑘 + 𝜇𝑗ℎ 𝑥𝑘

155

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

Algorithm 5.8: Augmented Lagrangian penalty method

156

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

• This approach is an improvement on the plain quadratic
penalty because updating the Lagrange multiplier estimates at
each iteration allows for more accurate solutions without
increasing  as much.

• Comparing the augmented Lagrangian approximation to the
constraints obtained from Eq. 5.40,

with the corresponding approximation in the quadratic penalty
method

(5.42)ℎ𝑗 ≈
1

𝜇
𝜆𝑗

∗ − 𝜆𝑗

(5.43)ℎ𝑗 ≈
𝜆𝑗

∗

𝜇

157

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

• The quadratic penalty relies solely on increasing  in the
denominator to drive the constraints to zero.

• However, with the augmented Lagrangian, we can also control
the numerator through the Lagrange multiplier estimate.

• If the estimate is reasonably close to the true Lagrange
multiplier, then the numerator becomes small for modest
values of .

• Thus, the augmented Lagrangian can provide a good solution
for x* while avoiding the ill-conditioning issues of the quadratic
penalty.

158

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

Example 5.11: Augmented Lagrangian for inequality constrained
problem.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 + 𝜆
1

4
𝑥1

2 + 𝑥2
2 − 1

2

+
𝜇

2

1

4
𝑥1

2 + 𝑥2
2 − 1

2

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.38 Augmented Lagrangian applied to inequality constrained problem..

159

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

Example 5.11: Augmented Lagrangian for inequality constrained
problem (continued).

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 + 𝜆
1

4
𝑥1

2 + 𝑥2
2 − 1

2

+
𝜇

2

1

4
𝑥1

2 + 𝑥2
2 − 1

2

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.39 Error in optimal solution as compared

with true solution as a function of an increasing

penalty parameter.

160

10. Penalty Methods
10.1. Exterior penalty method

10.1.2. Augmented Lagrangian

• So far we have only discussed equality constraints where the
definition for the augmented Lagrangian is universal.

• The above example included an inequality constraint by
assuming it was active and treating it like an equality, but this is
not an approach that can be used in general.

• An augmented Lagrangian can be used with inequality
constraints, though many alternative formulations exist.

• One well-known approach is given by

where

(5.44)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) + 𝜆𝑇𝑔(𝑥) +
1

2
𝜇 𝑔(𝑥) 2

2

(5.45)𝑔
𝑗
(𝑥) = ൞

ℎ𝑗 𝑥 𝑓𝑜𝑟 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑔𝑗 𝑥 𝑖𝑓𝑔𝑗 ≥ − Τ𝜆𝑗 𝜇

≥ − Τ𝜆𝑗 𝜇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

161

10. Penalty Methods

10.2. Interior penalty method

• Interior penalty methods work the same way as exterior penalty
methods - they transform the constrained problem into a series
of unconstrained problems.

• The main difference with interior penalty methods is that they
always seek to maintain feasibility.

• Instead of adding a penalty only when constraints are violated,
they add a penalty as the constraint is approached from the
feasible region.

• This type of penalty is particularly desirable if the objective
function is ill-defined outside the feasible region.

• These methods are called interior because the iteration points
remain on the interior of the feasible region.

162

10. Penalty Methods

10.2. Interior penalty method

• They are also referred to as barrier methods because the
penalty function acts as a barrier preventing iterates from
leaving the feasible region.

• One possible interior penalty function to enforce g(x)≤0 is the
inverse function (top of Fig. 5.40),

where 𝜋 𝑥 → ∞ as 𝑔𝑗(𝑥) → 0−.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.40 Two different interior barrier functions.

(5.46)𝜋 𝑥 = ෍

𝑗=1

𝑛𝑔

−
1

𝑔𝑗(𝑥)

163

10. Penalty Methods

10.2. Interior penalty method

• A more popular interior penalty function is the logarithmic
barrier (bottom of Fig. 5.40),

which also approaches infinity as the constraint tends to zero from
the feasible side.

• The penalty function is then

• Neither of these penalty functions applies when g>0 because
they are designed to be evaluated only within the feasible space.

(5.47)𝜋 𝑥 = ෍

𝑗=1

𝑛𝑔

−𝑙𝑛 −𝑔𝑗(𝑥)

(5.48)መ𝑓 𝑥; 𝜇 = 𝑓 𝑥 − 𝜇 ෍

𝑗=1

𝑛𝑔

𝑙𝑛 −𝑔𝑗(𝑥)

164

10. Penalty Methods

10.2. Interior penalty method

• Algorithms based on these penalties must be prevented from
evaluating infeasible points.

• Like exterior penalty methods, interior penalty methods must
also solve a sequence of unconstrained problems but with 𝜇 → 0
(see Algorithm 5.8).

• As the penalty parameter decreases, the region across which the
penalty acts decreases, as shown in Fig. 5.41.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.41 Logarithmic barrier penalty for an

inequality constrained one-dimensional problem. The

minimum of the penalized function (black circles)

approaches the true constrained minimum (blue

circle) as the penalty parameter  decreases.

165

10. Penalty Methods

10.2. Interior penalty method

Algorithm 5.8: Interior penalty method.

166

10. Penalty Methods

10.2. Interior penalty method

• The methodology is the same as is described in Algorithm 5.7
but with a decreasing penalty parameter.

• One major weakness of the method is that the penalty function
is not defined for infeasible points, so a feasible starting point
must be provided.

• For some problems, providing a feasible starting point may be
difficult or practically impossible.

• The line search must be safeguarded to prevent the algorithm
from becoming infeasible when starting from a feasible point.

• This can be achieved by checking the values of the constraints
and backtracking if any of them is greater than or equal to zero.

• Multiple backtracking iterations might be required.

167

10. Penalty Methods

10.2. Interior penalty method

• Like exterior penalty methods, the Hessian for interior penalty
methods becomes increasingly ill-conditioned as the penalty
parameter tends to zero.

• There are augmented and modified barrier approaches that can
avoid the ill-conditioning issue (and other methods that remain
ill-conditioned but can still be solved reliably, albeit
inefficiently).

• However, these methods have been superseded by the modern
interior point methods.

168

10. Penalty Methods

10.2. Interior penalty method

Example 5.12: Logarithmic penalty for inequality constrained
problem.

S
o

u
rc

e:
 M

ar
ti

n
s

et
 N

in
g
,

2
0

2
1

Figure 5.42 Logarithmic penalty for one inequality constraint. The minimum of the penalized

function approaches the constrained minimum from the feasible side.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 − 𝜇𝑙𝑛 −
1

4
𝑥1

2 − 𝑥2
2 + 1

	Slide 1: Gradient-Free Optimization
	Slide 2: 0. Topics
	Slide 3: 1. Introduction
	Slide 4: 2. When to use gradient-free algorithms
	Slide 5: 2. When to use gradient-free algorithms
	Slide 6: 2. When to use gradient-free algorithms
	Slide 7: 2. When to use gradient-free algorithms
	Slide 8: 2. When to use gradient-free algorithms
	Slide 9: 2. When to use gradient-free algorithms
	Slide 10: 2. When to use gradient-free algorithms
	Slide 11: 2. When to use gradient-free algorithms
	Slide 12: 3. Classification of gradient-free algorithms
	Slide 13: 3. Classification of gradient-free algorithms
	Slide 14: 3. Classification of gradient-free algorithms
	Slide 15: 3. Classification of gradient-free algorithms
	Slide 16: 3. Classification of gradient-free algorithms
	Slide 17: 3. Classification of gradient-free algorithms
	Slide 18: 3. Classification of gradient-free algorithms
	Slide 19: 3. Classification of gradient-free algorithms
	Slide 20: 3. Classification of gradient-free algorithms
	Slide 21: 3. Classification of gradient-free algorithms
	Slide 22: 3. Classification of gradient-free algorithms
	Slide 23: 3. Classification of gradient-free algorithms
	Slide 24: 3. Classification of gradient-free algorithms
	Slide 25: 4. Nelder-Mead algorithm
	Slide 26: 4. Nelder-Mead algorithm
	Slide 27: 4. Nelder-Mead algorithm
	Slide 28: 4. Nelder-Mead algorithm
	Slide 29: 4. Nelder-Mead algorithm
	Slide 30: 4. Nelder-Mead algorithm
	Slide 31: 4. Nelder-Mead algorithm
	Slide 32: 4. Nelder-Mead algorithm
	Slide 33: 4. Nelder-Mead algorithm
	Slide 34: 4. Nelder-Mead algorithm
	Slide 35: 4. Nelder-Mead algorithm
	Slide 36: 4. Nelder-Mead algorithm
	Slide 37: 4. Nelder-Mead algorithm
	Slide 38: 4. Nelder-Mead algorithm
	Slide 39: 5. Generalized Pattern Search
	Slide 40: 5. Generalized Pattern Search
	Slide 41: 5. Generalized Pattern Search
	Slide 42: 5. Generalized Pattern Search
	Slide 43: 5. Generalized Pattern Search
	Slide 44: 5. Generalized Pattern Search
	Slide 45: 5. Generalized Pattern Search
	Slide 46: 5. Generalized Pattern Search
	Slide 47: 5. Generalized Pattern Search
	Slide 48: 5. Generalized Pattern Search
	Slide 49: 5. Generalized Pattern Search
	Slide 50: 5. Generalized Pattern Search
	Slide 51: 5. Generalized Pattern Search
	Slide 52: 5. Generalized Pattern Search
	Slide 53: 5. Generalized Pattern Search
	Slide 54: 5. Generalized Pattern Search
	Slide 55: 5. Generalized Pattern Search
	Slide 56: 5. Generalized Pattern Search
	Slide 57: 6. DIRECT Algorithm
	Slide 58: 6. DIRECT Algorithm
	Slide 59: 6. DIRECT Algorithm
	Slide 60: 6. DIRECT Algorithm 6.1. Lipschitz constant
	Slide 61: 6. DIRECT Algorithm 6.1. Lipschitz constant
	Slide 62: 6. DIRECT Algorithm 6.1. Lipschitz constant
	Slide 63: 6. DIRECT Algorithm 6.2. Shubert’s algorithm
	Slide 64: 6. DIRECT Algorithm 6.2. Shubert’s algorithm
	Slide 65: 6. DIRECT Algorithm 6.2. Shubert’s algorithm
	Slide 66: 6. DIRECT Algorithm 6.2. Shubert’s algorithm
	Slide 67: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 68: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 69: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 70: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 71: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 72: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 73: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 74: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 75: 6. DIRECT Algorithm 6.3. One-dimensional DIRECT
	Slide 76: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 77: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 78: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 79: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 80: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 81: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 82: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 83: 6. DIRECT Algorithm 6.4. DIRECT in n dimensions
	Slide 84: 7. Genetic algorithms
	Slide 85: 7. Genetic algorithms
	Slide 86: 7. Genetic algorithms
	Slide 87: 7. Genetic algorithms
	Slide 88: 7. Genetic algorithms
	Slide 89: 7. Genetic algorithms
	Slide 90: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms
	Slide 91: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms
	Slide 92: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms
	Slide 93: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.1. Initial population
	Slide 94: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.1. Initial population
	Slide 95: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.2. Selection
	Slide 96: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.2. Selection
	Slide 97: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.2. Selection
	Slide 98: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.2. Selection
	Slide 99: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.2. Selection
	Slide 100: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.2. Selection
	Slide 101: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.2. Selection
	Slide 102: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.3. Crossover
	Slide 103: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.3. Crossover
	Slide 104: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.4. Mutation
	Slide 105: 7. Genetic algorithms 7.1. Binary-encoded Genetic Algorithms 7.1.4. Mutation
	Slide 106: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms
	Slide 107: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms
	Slide 108: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms 7.2.1. Initial population
	Slide 109: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms 7.2.2. Selection
	Slide 110: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms 7.2.3. Crossover
	Slide 111: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms 7.2.3. Crossover
	Slide 112: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms 7.2.3. Crossover
	Slide 113: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms 7.2.4. Mutation
	Slide 114: 7. Genetic algorithms 7.2. Real-encoded Genetic Algorithms 7.2.4. Mutation
	Slide 115: 7. Genetic algorithms
	Slide 116: 7. Genetic algorithms
	Slide 117: 7. Genetic algorithms 7.3. Constraint handling
	Slide 118: 7. Genetic algorithms 7.4. Convergence
	Slide 119: 7. Genetic algorithms 7.4. Convergence
	Slide 120: 8. Particle Swarm Optimization
	Slide 121: 8. Particle Swarm Optimization
	Slide 122: 8. Particle Swarm Optimization
	Slide 123: 8. Particle Swarm Optimization
	Slide 124: 8. Particle Swarm Optimization
	Slide 125: 8. Particle Swarm Optimization
	Slide 126: 8. Particle Swarm Optimization
	Slide 127: 8. Particle Swarm Optimization
	Slide 128: 8. Particle Swarm Optimization
	Slide 129: 8. Particle Swarm Optimization
	Slide 130: 8. Particle Swarm Optimization
	Slide 131: 9. Hybrid Metaheuristic Algorithms
	Slide 132: 9. Hybrid Metaheuristic Algorithms
	Slide 133: 9. Hybrid Metaheuristic Algorithms
	Slide 134: 10. Penalty Methods
	Slide 135: 10. Penalty Methods
	Slide 136: 10. Penalty Methods
	Slide 137: 10. Penalty Methods
	Slide 138: 10. Penalty Methods 10.1. Exterior penalty method
	Slide 139: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 140: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 141: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 142: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 143: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 144: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 145: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 146: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 147: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 148: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 149: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 150: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 151: 10. Penalty Methods 10.1. Exterior penalty method 10.1.1. Quadratic penalty method
	Slide 152: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 153: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 154: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 155: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 156: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 157: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 158: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 159: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 160: 10. Penalty Methods 10.1. Exterior penalty method 10.1.2. Augmented Lagrangian
	Slide 161: 10. Penalty Methods 10.2. Interior penalty method
	Slide 162: 10. Penalty Methods 10.2. Interior penalty method
	Slide 163: 10. Penalty Methods 10.2. Interior penalty method
	Slide 164: 10. Penalty Methods 10.2. Interior penalty method
	Slide 165: 10. Penalty Methods 10.2. Interior penalty method
	Slide 166: 10. Penalty Methods 10.2. Interior penalty method
	Slide 167: 10. Penalty Methods 10.2. Interior penalty method
	Slide 168: 10. Penalty Methods 10.2. Interior penalty method

