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0. Topics

• When to use gradient-free optimization methods

• Non-population based methods

• Population based methods

• Hybrid meta-heuristics

• Penalty functions



3

1. Introduction

• Gradient-free algorithms fill an essential role in optimization.

• The gradient-based algorithms introduced in Chapter 4 are 
efficient in finding local minima for high-dimensional 
nonlinear problems defined by continuous smooth functions

• However, the assumptions made for these algorithms are not 
always valid, which can render these algorithms ineffective.

• Also, gradients might not be available when a function is given 
as a black box.

• In this chapter, only a few popular representative gradient-free 
algorithms are introduced.

• Most are designed to handle unconstrained functions only, but 
they can be adapted to solve constrained problems by using 
penalty or filtering methods.
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2. When to use gradient-free 
algorithms

• Gradient-free algorithms can be useful when gradients are not 
available, such as when dealing with black-box functions.

• Although gradients can always be approximated with finite 
differences, these approximations suffer from potentially 
significant inaccuracies.

• Gradient-based algorithms require a more experienced user 
because they take more effort to set up and run.

• Overall, gradient-free algorithms are easier to get up and 
running but are much less efficient, particularly as the 
dimension of the problem increases.
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2. When to use gradient-free 
algorithms

• One significant advantage of gradient-free algorithms is that 
they do not assume function continuity.

• For gradient-based algorithms, function smoothness is 
essential when deriving the optimality conditions, both for 
unconstrained functions and constrained functions.

• More specifically, the Karush–Kuhn–Tucker (KKT) conditions 
require that the function be continuous in value (C0), gradient 
(C1), and Hessian (C2) in at least a small neighbourhood of the 
optimum.

• If, for example, the gradient is discontinuous at the optimum, it 
is undefined, and the KKT conditions are not valid.

• Away from optimum points, this requirement is not as 
stringent.
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2. When to use gradient-free 
algorithms

• Although gradient-based algorithms work on the same 
continuity assumptions, they can usually tolerate the occasional 
discontinuity, as long as it is away from an optimum point. 

• However, for functions with excessive numerical noise and 
discontinuities, gradient-free algorithms might be the only 
option.

• Many considerations are involved when choosing between a 
gradient based and a gradient-free algorithm.

• One problem characteristic often cited as a reason for choosing 
gradient-free methods is multimodality.

• Design space multimodality can be a result of an objective 
function with multiple local minima.

• In the case of a constrained problem, the multimodality can 
arise from the constraints that define disconnected or 
nonconvex feasible regions.
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2. When to use gradient-free 
algorithms

• Some gradient-free methods feature a global search that 
increases the likelihood of finding the global minimum.

• This feature makes gradient-free methods a common choice for 
multimodal problems.

• However, not all gradient-free methods are global search 
methods; some perform only a local search.

• Additionally, even though gradient-based methods are by 
themselves local search methods, they are often combined with 
global search strategies.

• It is not necessarily true that a global search, gradient-free 
method is more likely to find a global optimum than a multi-
start gradient-based method.

• As always, problem-specific testing is needed.
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2. When to use gradient-free 
algorithms

• Furthermore, it is assumed far too often that any complex 
problem is multimodal, but that is frequently not the case.

• Although it might be impossible to prove that a function is 
unimodal, it is easy to prove that a function is multimodal 
simply by finding another local minimum.

• Therefore, we should not make any assumptions about the 
multimodality of a function until we show definite multiple 
local minima.

• Additionally, we must ensure that perceived local minima are 
not artificial minima arising from numerical noise.

• Another reason often cited for using a gradient-free method is 
multiple objectives.

• Some gradient-free algorithms, such as the genetic algorithm, 
can be naturally applied to multiple objectives. 
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2. When to use gradient-free 
algorithms

• However, it is a misconception that gradient-free methods are 
always preferable just because there are multiple objectives.

• Another common reason for using gradient-free methods is 
when there are discrete design variables.

• Because the notion of a derivative with respect to a discrete 
variable is invalid, gradient-based algorithms cannot be used 
directly (although there are ways around this limitation).

• Some of the gradient-free algorithms (but not all) can handle 
discrete variables directly.

• Although multimodality, multiple objectives, or discrete 
variables are commonly mentioned as reasons for choosing a 
gradient-free algorithm, these are not necessarily automatic 
decisions, and careful consideration is needed.
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2. When to use gradient-free 
algorithms

• Assuming a choice exists (i.e., the function is not too noisy), one 
of the most relevant factors when choosing between a gradient-
free and a gradient-based approach is the dimension of the 
problem.

Figure 5.01 Cost of optimization for 

increasing number of design variables in the 

n-dimensional Rosenbrock function.
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• Figure 5.1 shows how many 
function evaluations are 
required to minimize the n-
dimensional Rosenbrock 
function for varying 
numbers of design 
variables.
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2. When to use gradient-free 
algorithms

• Two classes of algorithms are shown in the plot: gradient-free 
and gradient-based algorithms.

• The general takeaway is that for small-size problems (usually ≤ 
30 variables), gradient-free methods can be useful in finding a 
solution.

• Furthermore, because gradient-free methods usually take much 
less developer time to use, a gradient-free solution may even be 
preferable for these smaller problems.

• However, if the problem is large in dimension, then a gradient-
based method may be the only viable method despite the need 
for more developer time.
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3. Classification of gradient-
free algorithms

• There is a much wider variety of gradient-free algorithms 
compared with their gradient-based counterparts.

• Although gradient-based algorithms tend to perform local 
searches, have a mathematical rationale, and be deterministic, 
gradient-free algorithms exhibit different combinations of these 
characteristics. 

• Some of the most widely known gradient-free algorithms are 
shown in Table 5.01 and classify them according to the 
characteristics introduced in Figure 1.20.
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3. Classification of gradient-
free algorithms

Table 5.01 Classification of gradient-free optimization methods using the characteristics of Fig. 

1.20.
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3. Classification of gradient-free 
algorithms

• Local search, gradient-free algorithms that use direct function 
evaluations include the Nelder–Mead algorithm, generalized 
pattern search (GPS), and mesh-adaptive direct search 
(MADS).

• Although classified as local search in the table, the latter two 
methods are frequently used with globalization approaches.

• The Nelder–Mead algorithm is heuristic, whereas the other two 
are not.

• GPS and MADS are examples of derivative-free optimization 
(DFO) algorithms, which, despite the name, do not include all 
gradient-free algorithms.

• DFO algorithms are understood to be largely heuristic-free and 
focus on local search.
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3. Classification of gradient-free 
algorithms

• GPS is a family of methods that iteratively seek an 
improvement using a set of points around the current point.

• In its simplest versions, GPS uses a pattern of points based on 
the coordinate directions, but more sophisticated versions use a 
more general set of vectors.

• MADS improves GPS algorithms by allowing a much larger set 
of such vectors and improving convergence.
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3. Classification of gradient-free 
algorithms

• Model-based, local search algorithms include trust-region 
algorithms and implicit filtering.

• The model is an analytic approximation of the original function 
(also called a surrogate model), and it should be smooth, easy 
to evaluate, and accurate in the neighbourhood of the current 
point.

• The trust-region approach can be considered gradient-free if 
the surrogate model is constructed using just evaluations of the 
original function without evaluating its gradients.

• This does not prevent the trust-region algorithm from using 
gradients of the surrogate model, which can be computed 
analytically.

• Implicit filtering methods extend the trust-region method by 
adding a surrogate model of the function gradient to guide the 
search.
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3. Classification of gradient-free 
algorithms

• This effectively becomes a gradient-based method applied to 
the surrogate model instead of evaluating the function directly.

• Global search algorithms can be broadly classified as 
deterministic or stochastic, depending on whether they include 
random parameter generation within the optimization 
algorithm.
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3. Classification of gradient-free 
algorithms

• Deterministic, global search algorithms can be either direct or 
model based.

• Direct algorithms include Lipschitzian-based partitioning 
techniques—such as the “divide a hyperrectangle” (DIRECT) 
algorithm and branch-and-bound search - and multilevel 
coordinate search (MCS).

• The DIRECT algorithm selectively divides the space of the 
design variables into smaller and smaller n-dimensional boxes 
— hyperrectangles.

• It uses mathematical arguments to decide which boxes should 
be subdivided.

• Branch-and-bound search also partitions the design space, but 
it estimates lower and upper bounds for the optimum by using 
the function variation between partitions.
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3. Classification of gradient-free 
algorithms

• MCS is another algorithm that partitions the design space into 
boxes, where a limit is imposed on how small the boxes can get 
based on the number of times it has been divided.
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3. Classification of gradient-free 
algorithms

• Global-search algorithms based on surrogate models are 
similar to their local search counterparts.

• However, they use surrogate models to reproduce the features 
of a multimodal function instead of convex surrogate models. 

• One of the most widely used of these algorithms is efficient 
global optimization (EGO), which employs kriging surrogate 
models and uses the idea of expected improvement to maximize 
the likelihood of finding the optimum more efficiently.

• Other algorithms use radial basis functions (RBFs) as the 
surrogate model and also maximize the probability of 
improvement at new iterates.
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3. Classification of gradient-free 
algorithms

• Stochastic algorithms rely on one or more nondeterministic 
procedures; they include hit-and-run algorithms and the broad 
class of evolutionary algorithms.

• When performing benchmarks of a stochastic algorithm, you 
should run a large enough number of optimizations to obtain 
statistically significant results.

• Hit-and-run algorithms generate random steps about the 
current iterate in search of better points.

• A new point is accepted when it is better than the current one, 
and this process repeats until the point cannot be improved.
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3. Classification of gradient-free 
algorithms

• What constitutes an evolutionary algorithm is not well defined.

• Evolutionary algorithms are inspired by processes that occur in 
nature or society.

• There is a plethora of evolutionary algorithms in the literature, 
thanks to the fertile imagination of the research community and 
a never-ending supply of phenomena for inspiration.

• These algorithms are more of an analogy of the phenomenon 
than an actual model.

• They are, at best, oversimplified models and, at worst, barely 
connected to the phenomenon.

• Nature-inspired algorithms tend to invent a specific 
terminology for the mathematical terms in the optimization 
problem.

• For example, a design point might be called a “member of the 
population”, or the objective function might be the “fitness”.
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3. Classification of gradient-free 
algorithms

• The vast majority of evolutionary algorithms are population 
based, which means they involve a set of points at each iteration 
instead of a single one.

• Because the population is spread out in the design space, 
evolutionary algorithms perform a global search.

• The stochastic elements in these algorithms contribute to global 
exploration and reduce the susceptibility to getting stuck in 
local minima.

• These features increase the likelihood of getting close to the 
global minimum but by no means guarantee it.

• The algorithm may only get close because heuristic algorithms 
have a poor convergence rate, especially in higher dimensions, 
and because they lack a first-order mathematical optimality 
criterion.
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3. Classification of gradient-free 
algorithms

• This chapter covers five gradient-free algorithms:

– Nelder–Mead algorithm,

– generalized pattern search (GPS)

– DIRECT method

– genetic algorithms (GA)

– particle swarm optimization (PSO)

• There are a few other algorithms that can be used for 
continuous gradient-free problems (e.g., simulated annealing 
and branch and bound) which are more frequently used to solve 
discrete problems.
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4. Nelder-Mead algorithm

• The simplex method of Nelder and Mead is a deterministic, 
direct search method that is among the most cited gradient-free 
methods.

• It is also known as the nonlinear simplex - not to be confused 
with the simplex algorithm used for linear programming, with 
which it has nothing in common.

• The Nelder–Mead algorithm is based on a simplex, which is a 
geometric figure defined by a set of n+1 points in the design 
space of n variables, X={x(0), x(1), …, x(n)}.

• Each point x(i) represents a design (i.e., a full set of design 
variables).

• In two dimensions, the simplex is a triangle, and in three 
dimensions, it becomes a tetrahedron (see Fig. 5.02).

• Each optimization iteration corresponds to a different simplex.



26

4. Nelder-Mead algorithm

• The algorithm modifies the simplex at each iteration using five 
simple operations.

• The sequence of operations to be performed is chosen based on 
the relative values of the objective function at each of the 
points.

Figure 5.02 A simplex for n=3 has four vertices.
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4. Nelder-Mead algorithm

• The first step of the simplex algorithm is to generate n+1 points 
based on an initial guess for the design variables.

• This could be done by simply adding steps to each component 
of the initial point to generate n new points.

• However, this will generate a simplex with different edge 
lengths, and equal-length edges are preferable.

• Suppose we want the length of all sides to be l and that the first 
guess is x(0).

• The remaining points of the simplex, {x(1), …, x(n)}, can be 
computed by

where s(i) is a vector whose components j are defined by

𝑥(𝑖) = 𝑥(0) + 𝑠(𝑖) (5.01)
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4. Nelder-Mead algorithm

• At any given iteration, the objective f is evaluated for every 
point, and the points are ordered based on the respective values 
of  f, from the lowest to the highest.

• Thus, in the ordered list of simplex points X={x(0), x(1), …, x(n-1), 
x(n)}, the best point is x(0), and the worst one is x(n).

• The Nelder–Mead algorithm performs four main operations on 
the simplex to create a new one: reflection, expansion, outside 
contraction, inside contraction, and shrinking.

• The operations are shown in Fig. 5.03.

𝑠𝑗
(𝑖)

=

1

𝑛 2
𝑛 + 1 − 1 +

1

2
, 𝑖𝑓 𝑗 = 𝑖

1

𝑛 2
𝑛 + 1 − 1 , 𝑖𝑓 𝑗 ≠ 𝑖

(5.02)
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4. Nelder-Mead algorithm

Figure 5.03 Nelder–Mead algorithm operations for n = 2.
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4. Nelder-Mead algorithm

• Each of these operations, except for the shrinking, generates a 
new point, given by

where  is a scalar, and xC is the centroid of all the points except 
for the worst one, that is,

• This generates a new point along the line that connects the 
worst point, x(n), and the centroid of the remaining points, xC.

• This direction can be seen as a possible descent direction.

𝑥 = 𝑥𝐶 + 𝛼 𝑥𝐶 − 𝑥(𝑛)
(5.03)

𝑥𝐶 =
1

𝑛
෍

𝑖=0

𝑛−1

𝑥(𝑖)
(5.04)
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4. Nelder-Mead algorithm

• Each iteration aims to replace the worst point with a better one 
to form a new simplex.

• Each iteration always starts with reflection, which generates a 
new point using Eq. 5.03 with =1, as shown in Fig. 5.03.

• If the reflected point is better than the best point, then the 
“search direction” was a good one, and we go further by 
performing an expansion using Eq. 5.03 with =2.

• If the reflected point is between the second-worst and the worst 
point, then the direction was not great, but it improved 
somewhat.

• In this case, we perform an outside contraction (=0.5).

• If the reflected point is worse than our worst point, we try an 
inside contraction instead (=-0.5).
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4. Nelder-Mead algorithm

• Shrinking is a last-resort operation that we can perform when 
nothing along the line connecting x(n) and xC produces a better 
point.

• This operation consists of reducing the size of the simplex by 
moving all the points closer to the best point,

where =0.5.

• Algorithm 5.1 details how a new simplex is obtained for each 
iteration.

• In each iteration, the focus is on replacing the worst point with 
a better one instead of improving the best.

• The corresponding flowchart is shown in Fig. 5.04.

𝑥(𝑖) = 𝑥(0) + 𝛾 𝑥(𝑖) − 𝑥(0)  𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 (5.05)
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4. Nelder-Mead algorithm

Algorithm 5.1: Nelder-Mead algorithm
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4. Nelder-Mead algorithm

Figure 5.04 Flowchart of Nelder–Mead.
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4. Nelder-Mead algorithm

• The cost for each iteration is one function evaluation if the 
reflection is accepted, two function evaluations if an expansion 
or contraction is performed, and n+2 evaluations if the 
iteration results in shrinking.

• Although the n evaluations when shrinking can be parallelized, 
it would not be worthwhile because the other operations are 
sequential.

• There are a number of ways to quantify the convergence of the 
simplex method.

• One straightforward way is to use the size of simplex, that is,

and specify that it must be less than a certain tolerance.

∆𝑥= ෍

𝑖=0

𝑛−1

𝑥(𝑖) − 𝑥(𝑛)
(5.06)
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4. Nelder-Mead algorithm

• Another measure of convergence that can be used is the 
standard deviation of the function values,

where ҧ𝑓 is the mean of the n+1 function values.

• Another possible convergence criterion is the difference 
between the best and worst values in the simplex.

• Nelder–Mead is known for occasionally converging to non-
stationary points, so you should check the result if possible.

• Like most direct-search methods, Nelder–Mead cannot directly 
handle constraints.

∆𝑓=
σ𝑖=0

𝑛 𝑓(𝑖) − ҧ𝑓
2

𝑛 + 1
(5.07)
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4. Nelder-Mead algorithm

• One approach to handling constraints would be to use a penalty 
method (discussed in Section 10) to form an unconstrained 
problem.

• In this case, the penalty does not need to be differentiable, so a 
linear penalty method would suffice.
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4. Nelder-Mead algorithm

Example 5.1: Nelder–Mead algorithm applied to the bean 
function.

Figure 5.05 Sequence of simplices that minimize the bean function.
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5. Generalized Pattern Search

• GPS builds upon the ideas of a coordinate search algorithm.

• In coordinate search, we evaluate points along a mesh aligned 
with the coordinate directions, move toward better points, and 
shrink the mesh when we find no improvement nearby. 

• Consider a two-dimensional coordinate search for an 
unconstrained problem.

• At a given point xk, points that are a distance k away in all 
coordinate directions are evaluated, as shown in Fig. 5.06.

Figure 5.06 Local mesh for a two-dimensional 

coordinate search at iteration k.
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5. Generalized Pattern Search

• If the objective function improves at any of these points (four 
points in this case), the point is recentered with xk+1 at the most 
improved point, the mesh size is kept the same at k +1=k , and 
the next iteration is started.

• Alternatively, if none of the points offers an improvement, the 
same centre is kept (xk +1=xk) and the mesh is shrunk to k+1<k.

• This process repeats until it meets some convergence criteria.

• We now explore various ways in which GPS improves 
coordinate search.

• Coordinate search moves along coordinate directions, but this 
is not necessarily desirable.

• Instead, the GPS search directions only need to form a positive 
spanning set.
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5. Generalized Pattern Search

• Given a set of directions 𝒟={d1, d1, …, dnd}, the set 𝒟 is a 
positive spanning set if the vectors are linearly independent, 
and a non-negative linear combination of these vectors spans 
the n-dimensional space.

• Coordinate vectors fulfil this requirement, but there is an 
infinite number of options.

• Vectors d are referred to as positive spanning directions.

• Only linear combinations with positive multipliers are 
considered, so in two dimensions, the unit coordinate vectors Ƹ𝑒1 
and Ƹ𝑒2 are not sufficient to span two-dimensional space; 
however, Ƹ𝑒1, Ƹ𝑒2, − Ƹ𝑒1 and − Ƹ𝑒2 are sufficient.

• For a given dimension n, the largest number of vectors that 
could be used while remaining linearly independent (known as 
the maximal set) is 2n.
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5. Generalized Pattern Search

• Conversely, the minimum number of possible vectors needed to 
span the space (known as the minimal set) is n+1.

• These sizes are necessary but not sufficient conditions.

• Some algorithms randomly generate a positive spanning set, 
whereas other algorithms require the user to specify a set based 
on knowledge of the problem.

• The positive spanning set need not be fixed throughout the 
optimization.

• A common default for a maximal set is the set of coordinate 
directions ± Ƹ𝑒𝑖.
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5. Generalized Pattern Search

• In three dimensions, this would be:

• A potential default minimal set is the positive coordinate 
directions + Ƹ𝑒𝑖 and a vector filled with -1 (or more generally, the 
negative sum of the other vectors).

• As an example in three dimensions:

𝒟 = 𝑑1, … . , 𝑑6 =

𝑑1 = 1,0,0

𝑑2 = 0,1,0

𝑑3 = 0,0,1

𝑑4 = −1,0,0

𝑑5 = 0, −1,0

𝑑6 = 0,0, −1

(5.08)
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5. Generalized Pattern Search

• Figure 5.07 shows an example maximal set (four vectors) and 
minimal set (three vectors) for a two-dimensional problem. 

𝒟 = 𝑑1, … . , 𝑑4 =

𝑑1 = 1,0,0

𝑑2 = 0,1,0

𝑑3 = 0,0,1

𝑑4 = −1, −1, −1

(5.09)

Figure 5.07 A maximal set of positive spanning vectors in two dimensions 

(left) and a minimal set (right).
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5. Generalized Pattern Search

• These direction vectors are then used to create a mesh.

• Given a current centre point xk, which is the best point found so 
far, and a mesh size k, the mesh is created as follows:

• For example, in two dimensions, if the current point is xk=[1,1], 
the mesh size is k =0.5, and we use the coordinate directions 
for d, then the mesh points would be 
{[1,1.5],[1,0.5],[0.5,1],[1.5,1],}.

• The evaluation of points in the mesh is called polling or a poll.

• In the coordinate search example, every point in the mesh is 
evaluated, which is usually inefficient.

• More typically, opportunistic polling is used, which terminates 
polling at the first point that offers an improvement.

𝑥𝑘 = ∆𝑘𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑 ∈ 𝒟 (5.10)
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5. Generalized Pattern Search

• Figure 5.08 shows a two-dimensional example where the order 
of evaluation is d1=[1,0], d2=[0,1], d3=[-1,0], d4=[0,-1].

• Because we found an improvement at d2, we do not continue 
evaluating d3 and d4.

• Opportunistic polling may not yield the best point in the mesh, 
but the improvement in efficiency is usually worth the trade-off.

Figure 5.08 A two-dimensional example of opportunistic polling with 

d1=[1,0], d2=[0,1], d3=[-1,0], d4=[0,-1]. An improvement in f was found at 

d2, so we do not evaluate d3 and d4 (shown with a faded colour). S
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5. Generalized Pattern Search

• Some algorithms add a user option for utilizing a full poll, in 
which case all points in the mesh are evaluated.

• If more than one point offers a reduction, the best one is 
accepted.

• Another approach that is sometimes used is called dynamic 
polling.

• In this approach, a successful poll reorders the direction vectors 
so that the direction that was successful last time is checked 
first in the next poll.

• A key feature of GPS is its use of two phases: a search phase and 
a poll phase.

• The search phase is intended to be global, whereas the poll 
phase is local, as discussed previously.
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5. Generalized Pattern Search

• The search phase is intended to be flexible and is not specified 
by the GPS algorithm.

• Common options for the search phase include the following:

– No search phase

– A mesh search, similar to polling but with large spacing across the 
domain

– An alternative solver, such as Nelder–Mead or a genetic algorithm

– A surrogate model, which could then use any number of solvers 
that include gradient-based methods. This approach is often used 
when the function is expensive, and a lower-fidelity surrogate can 
guide the optimizer to promising regions of the larger design 
space.

– Random evaluation using a space-filling method
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5. Generalized Pattern Search

• The type of search can even change throughout the 
optimization.

• Like the polling phase, the goal of the search phase is to find a 
better point (i.e., f(xk+1)<f(xk)) but within a broader domain.

• We begin with a search at every iteration.

• If the search fails to produce a better point, we continue with a 
poll.

• If a better point is identified in either phase, the iteration ends, 
and we begin a new search.

• In some variants of this algorithm, a successful poll is followed 
by another poll.

• Thus, at each iteration, a search and a poll, just a search, or just 
a poll might be performed.
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5. Generalized Pattern Search

• We describe one option for a search procedure based on the 
same mesh ideas as the polling step.

• The concept is to extend the mesh throughout the entire 
domain, as shown in Fig. 5.09.

Figure 5.09 Meshing strategy extended across the domain. The same 

directions (and potentially spacing) are repeated at each mesh point, as 

indicated by the lighter arrows throughout the entire domain.
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5. Generalized Pattern Search

• In this example, the mesh size k is shared between the search 
and poll phases.

• However, it is usually more effective if these phases are 
independent.

• Mathematically, the global mesh can be defined as the set

where D is a matrix, whose columns contain the basis vectors d. 

• Vector z consists of nonnegative integers, and we consider all 
possible combinations of integers that fall within the bounds of 
the domain.

• A fixed number of search evaluation points are chosen and 
points are randomly selected from the global mesh for the 
search strategy.

𝐺 = 𝑥𝑘 + ∆𝑘𝐷𝑧 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧𝑖 ∈ 𝒵+
(5.11)
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5. Generalized Pattern Search

• If improvement is found among that set, then we recentre xk+1 

at this improved point, grow the mesh (k +1>k), and end the 
iteration (and then restart the search).

• A simple search phase along these lines is described in 
Algorithm 5.2.

• Termination is often triggered simply by a user-specified 
maximum number of iterations.

• However, other convergence criteria are sometimes used, such 
as a threshold on mesh size or a threshold on the improvement 
in the function value across multiple iterations.

• The method can handle linear and nonlinear constraints.

• For linear constraints, one effective strategy is to change the 
positive spanning directions so that they align with any linear 
constraints that are nearby (Fig. 5.10).
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5. Generalized Pattern Search

• For nonlinear constraints, penalty approaches (Section 10) are 
applicable, although the filter method is another effective 
approach.

• An overview of a generalized pattern-search algorithm is shown 
in Algorithm 5.3.

Figure 5.10 Mesh direction changed during optimization to align with linear 

constraints when close to the constraint.
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5. Generalized Pattern Search

Algorithm 5.2: An example search phase for GPS
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5. Generalized Pattern Search

Algorithm 5.3: Generalized Pattern Search
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5. Generalized Pattern Search

Example 5.2: Minimization of a multimodal function with GPS.

S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1

Figure 5.11 

Convergence 

history of a 

GPS 

algorithm on 

the 

multimodal 

Jones 

function.
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6. DIRECT Algorithm

• The DIRECT algorithm is different from the other gradient-free 
optimization algorithms in this chapter in that it is based on 
mathematical arguments.

• This is a deterministic method guaranteed to converge to the 
global optimum under conditions that are not too restrictive 
(although it might require a prohibitive number of function 
evaluations).

• One way to ensure that we find the global optimum within a 
finite design space is by dividing this space into a regular 
rectangular grid and evaluating every point in this grid.

• This is called an exhaustive search, and the precision of the 
minimum depends on how fine the grid is.

• The cost of this brute-force strategy is high and goes up 
exponentially with the number of design variables.
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6. DIRECT Algorithm

• The DIRECT method relies on a grid, but it uses an adaptive 
meshing scheme that dramatically reduces the cost.

• It starts with a single n-dimensional hypercube that spans the 
whole design space - like many other gradient-free methods, 
DIRECT requires upper and lower bounds on all the design 
variables.

• Each iteration divides this hypercube into smaller ones and 
evaluates the objective function at the centre of each of these.

• At each iteration, the algorithm only divides rectangles 
determined to be potentially optimal.

• The fundamental strategy in the DIRECT method is how it 
determines this subset of potentially optimal rectangles, which 
is based on the mathematical concept of Lipschitz continuity.
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6. DIRECT Algorithm

• We start by explaining Lipschitz continuity and then describe 
an algorithm for finding the global minimum of a one-
dimensional function using this concept - Shubert’s algorithm.

• Although Shubert’s algorithm is not practical in general, it will 
help us understand the mathematical rationale for the DIRECT 
algorithm.

• Then we explain the DIRECT algorithm for one-dimensional 
functions before generalizing it for n dimensions.
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6. DIRECT Algorithm

6.1. Lipschitz constant

• Consider the single-variable function f(x) shown in Fig. 5.12.

• For a trial point x*, a cone is drawn with slope L by drawing the 
lines to the left and right, respectively:

Figure 5.12 From a given trial point x* we can draw a cone with slope L (left). For a function to be 

Lipschitz continuous, we need all cones with slope L to lie under the function for all points in the 

domain (right).
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𝑓+ 𝑥 = 𝑓 𝑥∗ + 𝐿(𝑥 − 𝑥∗) 

𝑓− 𝑥 = 𝑓 𝑥∗ − 𝐿(𝑥 − 𝑥∗)
(5.12)

(5.13)
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6. DIRECT Algorithm

6.1. Lipschitz constant

• This cone is shown in Fig. 5.12 (left), as well as cones 
corresponding to other values of L.

• A function f is said to be Lipschitz continuous if there is a cone 
slope L such that the cones for all possible trial points in the 
domain remain under the function.

• This means that there is a positive constant k such that

where D is the function domain.

• Graphically, this condition means a cone with slope L can be 
drawn from any trial point evaluation f(x*) such that the 
function is always bounded by the cone, as shown in Fig. 5.12 
(right).

𝑓 𝑥 − 𝑓 𝑥∗ ≤ 𝐿 𝑥 − 𝑥∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑥∗ ∈ 𝐷 (5.14)
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6. DIRECT Algorithm

6.1. Lipschitz constant

• Any L that satisfies Eq. 5.14 is a Lipschitz constant for the 
corresponding function.
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6. DIRECT Algorithm

6.2. Shubert’s algorithm

• If a Lipschitz constant for a single-variable function is known, 
Shubert’s algorithm can find the global minimum of that 
function.

• Because the Lipschitz constant is not available in the general 
case, the DIRECT algorithm is designed to not require this 
constant.

• However, we explain Shubert’s algorithm first because it 
provides some of the basic concepts used in the DIRECT 
algorithm.

• Shubert’s algorithm starts with a domain within which we want 
to find the global minimum - [a,b] in Fig. 5.13.

• Using the property of the Lipschitz constant L defined in Eq. 
5.14, we know that the function is always above a cone of slope 
L evaluated at any point in the domain.



64

6. DIRECT Algorithm

6.2. Shubert’s algorithm

Figure 5.13 Shubert’s algorithm 

requires an initial domain and a 

valid Lipschitz constant and then 

increases the lower bound of the 

global minimum with each 

successive iteration.
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6. DIRECT Algorithm

6.2. Shubert’s algorithm

• Shubert’s algorithm starts by sampling the endpoints of the 
interval within which we want to find the global minimum 
([a,b] in Fig. 5.13).

• A first lower bound on the global minimum is established by 
finding the cone’s intersection (x1 in Fig. 5.13, k=0) for the 
extremes of the domain.

• The function is evaluated at x1 and a cone can be drawn about 
this point to find two more intersections (x2 and x3).

• Because these two points always intersect at the same objective 
lower bound value, they both need to be evaluated.

• Each subsequent iteration of Shubert’s algorithm adds two new 
points to either side of the current point.

• These two points are evaluated, and the lower bounding 
function is updated with the resulting new cones.
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6. DIRECT Algorithm

6.2. Shubert’s algorithm

• We then iterate by finding the two points that minimize the new 
lower bounding function, evaluating the function at these 
points, updating the lower bounding function, and so on.

• The lowest bound on the function increases at each iteration 
and ultimately converges to the global minimum.

• At the same time, the segments in x decrease in size.

• The lower bound can switch from distinct regions as the lower 
bound in one region increases beyond the lower bound in 
another region.

• The two significant shortcomings of Shubert’s algorithm are 
that

1. a Lipschitz constant is usually not available for a general function

2. it is not easily extended to n dimensions

• The DIRECT algorithm addresses these two shortcomings.
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• Before explaining the n-dimensional DIRECT algorithm, we 
introduce the one-dimensional version based on principles 
similar to those of the Shubert algorithm.

• Like Shubert’s method, DIRECT starts with the domain [a,b]

• However, instead of sampling the endpoints a and b, it samples 
the midpoint.

• Consider the closed domain [a,b] shown in Fig. 5.14 (left).

• For each segment, the objective function is evaluated at the 
segment’s midpoint.

• In the first segment, which spans the whole domain, the 
midpoint is c0=(a+b)/2.

• Assuming some value of L, which is not known and will not be 
needed, the lower bound on the minimum would be  f(c)-L(b-
a)/2.
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• We want to increase this lower bound on the function 
minimum by dividing this segment further.

• To do this in a regular way that reuses previously evaluated 
points and can be repeated indefinitely, we divide it into three 
segments, as shown in Fig. 5.14 (right).

Figure 5.14 The DIRECT algorithm evaluates the middle point (left), and each successive 

iteration trisects the segments that have the greatest potential (right). S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1



69

6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• Now we have increased the lower bound on the minimum. 

• Unlike the Shubert algorithm, the lower bound is a 
discontinuous function across the segments, as shown in Fig. 
5.14 (right).

• Instead of continuing to divide every segment into three other 
segments, we only divide segments selected according to a 
potentially optimal criterion.

• To better understand this criterion, consider a set of segments 
[ai,bi] at a given DIRECT iteration, where segment i has a half-
length di=(bi-ai)/2 and a function value f(ci) evaluated at the 
segment centre ci=(ai+bi)/2.

• If we plot f(ci) versus di for a set of segments, we get the pattern 
shown in Fig. 5.15.
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• The overall rationale for the potentially optimal criterion is that 
two metrics quantify this potential: the size of the segment and 
the function value at the centre of the segment.

• The larger the segment is, the greater the potential for that 
segment to contain the global minimum.

• The lower the function value, the greater that potential is as 
well.

Figure 5.15 Potentially optimal segments 

in the DIRECT algorithm are identified 

by the lower convex hull of this plot. S
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• For a set of segments of the same size, we know that the one 
with the lowest function value has the best potential and should 
be selected.

• If two segments have the same function value and different 
sizes, we should select the one with the largest size.

• For a general set of segments with various sizes and value 
combinations, there might be multiple segments that can be 
considered potentially optimal.

• Potentially optimal segments are identified as follows.

• If we draw a line with a slope corresponding to a Lipschitz 
constant L from any point in Fig. 5.15, the intersection of this 
line with the vertical axis is a bound on the objective function 
for the corresponding segment.
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• Therefore, the lowest bound for a given L can be found by 
drawing a line through the point that achieves the lowest 
intersection.

• However, L is not known, and we do not want to assume a value 
because we do not want to bias the search.

• If L were high, it would favour dividing the larger segments.

• Low values of L would result in dividing the smaller segments.

• The DIRECT method hinges on considering all possible values 
of L, effectively eliminating the need for this constant.

• To eliminate the dependence on L, we select all the points for 
which there is a line with slope L that does not go above any 
other point.
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• This corresponds to selecting the points that form a lower 
convex hull, as shown by the piecewise linear function in Fig. 
5.15.

• This establishes a lower bound on the function for each 
segment size.

• Mathematically, a segment j in the set of current segments S is 
said to be potentially optimal if there is a L≥0 such that

where fmin is the best current objective function value, and  is a 
small positive parameter.

• The first condition corresponds to finding the points in the 
lower convex hull mentioned previously.

𝑓 𝑐𝑗 − 𝐿𝑑𝑗 ≤ 𝑓 𝑐𝑖 − 𝐿𝑑𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆 

𝑓 𝑐𝑗 − 𝐿𝑑𝑗 ≤ 𝑓𝑚𝑖𝑛 − 𝜀 𝑓𝑚𝑖𝑛

(5.15)

(5.16)
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• The second condition in Eq. 5.16 ensures that the potential 
minimum is better than the lowest function value found so far 
by at least a small amount.

• This prevents the algorithm from becoming too local, wasting 
function evaluations in search of smaller function 
improvements.

• The parameter  balances the search between local and global. 

• A typical value is  =10-4, and its range is usually such that      
10-7≤ ≤ 10-2.

• There are efficient algorithms for finding the convex hull of an 
arbitrary set of points in two dimensions, such as the Jarvis 
march.
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6. DIRECT Algorithm

6.3. One-dimensional DIRECT

• These algorithms are more than we need because we only 
require the lower part of the convex hull, so the algorithms can 
be simplified for our purposes.

• As in the Shubert algorithm, the division might switch from one 
part of the domain to another, depending on the new function 
values.

• Compared with the Shubert algorithm, the DIRECT algorithm 
produces a discontinuous lower bound on the function values, 
as shown in Fig. 5.16.

Figure 5.16 The lower bound for the 

DIRECT method is discontinuous at the 

segment boundaries. S
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6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• The n-dimensional DIRECT algorithm is similar to the one-
dimensional version but becomes more complex.

• The main difference is that we deal with hyperrectangles 
instead of segments.

• A hyperrectangle can be defined by its centre-point position c in 
n-dimensional space and a half-length in each direction i, ei, as 
shown in Fig. 5.17.

• The DIRECT algorithm assumes that the initial dimensions are 
normalized so that we start with a hypercube.

Figure 5.17 Hyperrectangle in three dimensions, 

where d is the maximum distance between the 

centre and the vertices, and ei is the half-length in 

each direction i.
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6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• To identify the potentially optimal rectangles at a given 
iteration, we use exactly the same conditions in Eqs. 5.15 and 
5.16, but ci is now the centre of the hyperrectangle, and di is the 
maximum distance from the centre to a vertex.

• The explanation illustrated in Fig. 5.15 still applies in the n-
dimensional case and still involves simply finding the lower 
convex hull of a set of points with different combinations of f 
and d.

• The main complication introduced in the n-dimensional case is 
the division (trisection) of a selected hyperrectangle.

• The question is which directions should be divided first.
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6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• The logic to handle this in the DIRECT algorithm is to prioritize 
reducing the dimensions with the maximum length, ensuring 
that hyperrectangles do not deviate too much from the 
proportions of a hypercube.

• First, we select the set of the longest dimensions for division 
(there are often multiple dimensions with the same length). 

• Among this set of the longest dimensions, we select the 
direction that has been divided the least over the whole history 
of the search.

• If there are still multiple dimensions in the selection, we simply 
select the one with the lowest index.

• Algorithm 5.4 details the full algorithm.
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6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• Figure 5.18 shows the first three iterations for a two-
dimensional example and the corresponding visualization of 
the conditions expressed in Eqs. 5.15 and 5.16.

• We start with a square that contains the whole domain and 
evaluate the centre point.

• The value of this point is plotted on the f–d plot on the far right.

• The first iteration trisects the starting square along the first 
dimension and evaluates the two new points.

• The values for these three points are plotted in the second 
column from the right in the f–d plot, where the centre point is 
reused, as indicated by the arrow and the matching colour.

• At this iteration, we have two points that define the convex hull.
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6. DIRECT Algorithm

6.4. DIRECT in n dimensions

Figure 5.18 DIRECT iterations 

for two-dimensional case (left) 

and corresponding identification 

of potentially optimal rectangles 

(right).
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6. DIRECT Algorithm

6.4. DIRECT in n dimensions

• In the second iteration, we have three rectangles of the same 
size, so we divide the one with the lowest value and evaluate the 
centres of the two new rectangles (which are squares in this 
case).

• We now have another column of points in the f–d plot 
corresponding to a smaller d and an additional point that 
defines the lower convex hull.

• Because the convex hull now has two points, we trisect two 
different rectangles in the third iteration.



82

6. DIRECT Algorithm

6.4. DIRECT in n dimensions

Algorithm 5.4: DIRECT in n-dimensions
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6. DIRECT Algorithm

6.4. DIRECT in n dimensions

Example 5.3: Minimization of a multimodal function (Jones 
function) with DIRECT.

Figure 5.19 Potentially optimal 

rectangles for the DIRECT 

iterations shown in Fig. 5.20.
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Figure 5.20 The DIRECT method 

quickly determines the region with the 

global minimum of the Jones function 

after briefly exploring the regions with 

other minima.
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7. Genetic algorithms

• Genetic algorithms (GAs) are the most well-known and widely 
used type of evolutionary algorithm.

• They were also among the earliest to have been developed.

• Like many evolutionary algorithms, GAs are population based.

• The optimization starts with a set of design points (the 
population) rather than a single starting point, and each 
optimization iteration updates this set in some way.

• Each iteration in the GA is called a generation, and each 
generation has a population with np points.

• A chromosome is used to represent each point and contains the 
values for all the design variables, as shown in Fig. 5.21.

• Each design variable is represented by a gene.

• As we will see later, there are different ways for genes to 
represent the design variables.
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7. Genetic algorithms

• GAs evolve the population using an algorithm inspired by 
biological reproduction and evolution using three main steps: 

1. selection

2. crossover 

3. mutation

• Selection is based on natural selection, where members of the 
population that acquire favourable adaptations are more likely 
to survive longer and contribute more to the population gene 
pool. 
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Figure 5.21 Each GA iteration involves a population 

of design points, where each design is represented by a 

chromosome, and each design variable is represented 

by a gene.
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7. Genetic algorithms

• Crossover is inspired by chromosomal crossover, 
which is the exchange of genetic material between 
chromosomes during sexual reproduction.

• Mutation mimics genetic mutation, which is a 
permanent change in the gene sequence that 
occurs naturally.

• Algorithm 5.5 and Fig. 5.22 show how these three 
steps perform optimization.

• Although most GAs follow this general procedure, 
there is a great degree of flexibility in how the 
steps are performed, leading to many variations in 
GAs.
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Figure 5.22 At each GA iteration, pairs of parents are selected from the population 

to generate the offspring through crossover, which becomes the new population.
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7. Genetic algorithms

• For example, there is no single method specified for the 
generation of the initial population, and the size of that 
population varies.

• Similarly, there are many possible methods for selecting the 
parents, generating the offspring, and selecting the survivors. 

• Here, the new population (Pk+1) is formed exclusively by the 
offspring generated from the crossover.

• However, some GAs add an extra selection process that selects 
a surviving population of size np among the population of 
parents and offspring.
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7. Genetic algorithms

Algorithm 5.5: Genetic algorithm.
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7. Genetic algorithms

• In addition to the flexibility in the various operations, GAs use 
different methods for representing the design variables.

• The design variable representation can be used to classify 
genetic algorithms into two broad categories: binary-encoded 
and real-encoded genetic algorithms.

• Binary-encoded algorithms use bits to represent the design 
variables, whereas the real-encoded algorithms keep the same 
real value representation used in most other algorithms.

• The details of the operations in Algorithm 5.5 depend on 
whether we are using one or the other representation, but the 
principles remain the same.

• In the rest of this section, we describe a particular way of 
performing these operations for each of the possible design 
variable representations.
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7. Genetic algorithms

7.1. Binary-encoded Genetic Algorithms

• The original GAs were based on binary encoding because they 
more naturally mimic chromosome encoding.

• Binary-coded GAs are applicable to discrete or mixed-integer 
problems.

• When using binary encoding, we represent each variable as a 
binary number with m bits.

• Each bit in the binary representation has a location, i, and a 
value, bi (which is either 0 or 1).

• To represent a real-valued variable, a finite interval 𝑥 ∈ 𝑥, 𝑥  

needs to be considered first, which can then be divided into 2m-
1 intervals.

• The size of the interval is given by

(5.17)∆𝑥 =
𝑥 − 𝑥

2𝑚 − 1
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7. Genetic algorithms

7.1. Binary-encoded Genetic Algorithms

• To have a more precise representation, more bits must be used.

• When using binary-encoded GAs, we do not need to encode the 
design variables because they are generated and manipulated 
directly in the binary representation.

• Still, it is necessary to decode them before providing them to 
the evaluation function.

• To decode a binary representation, we use

(5.18)𝑥 = 𝑥 + ෍

𝑖=0

𝑚−1

𝑏𝑖2𝑖∆𝑥
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7. Genetic algorithms

7.1. Binary-encoded Genetic Algorithms

Example 5.4: Binary representation of a real number.

• Suppose we have a continuous design variable x that we want to 
represent in the interval [-20,80] using 12 bits. Then, we have 
212-1=4095 intervals, and using Eq. 5.17, we get x=0.0244. 
This interval is the error in this finite-precision representation. 

• For the following sample binary representation:

we can use Eq. 5.18 to compute the equivalent real number, which 
turns out to be x≈32.55.
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7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.1. Initial population

• The first step in a genetic algorithm is to generate an initial set 
(population) of points.

• As a rule of thumb, the population size should be approximately 
one order of magnitude larger than the number of design 
variables, and this size should be tuned.

• One popular way to choose the initial population is to do it at 
random.

• Using binary encoding, we can assign each bit in the 
representation of the design variables a 50 percent chance of 
being either 1 or 0.

• This can be done by generating a random number 0≤r≤1 and 
setting the bit to 0 if r≤0.5 and 1 if r>0.5.
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7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.1. Initial population

• For a population of size np, with n design variables, where each 
variable is encoded using m bits, the total number of bits that 
needs to be generated is np×n×m.

• To achieve better spread in a larger dimensional space, the 
sampling methods described in Chapter 6.? are generally more 
effective than random populations.

• Although we then need to evaluate the function across many 
points (a population), these evaluations can be performed in 
parallel.
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7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• In this step, we choose points from the population for 
reproduction in a subsequent step (called a mating pool).

• On average, it is desirable to choose a mating pool that 
improves in fitness (thus mimicking the concept of natural 
selection), but it is also essential to maintain diversity.

• In total, we need to generate np/2 pairs.

• The simplest selection method is to randomly select two points 
from the population until the requisite number of pairs is 
complete.

• This approach is not particularly effective because there is no 
mechanism to move the population toward points with better 
objective functions.
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7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• Tournament selection is a better method that randomly pairs 
up np points and selects the best point from each pair to join the 
mating pool.

• The same pairing and selection process is repeated to create 
np/2 more points to complete a mating pool of np points.
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7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

Example 5.5: Tournament selection process.

• Figure 5.23 illustrates the process with a small population. 
Each member of the population ends up in the mating pool 
zero, one, or two times, with better points more likely to appear 
in the pool. The best point in the population will always end up 
in the pool twice, whereas the worst point in the population is 
always eliminated.
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Figure 5.23 Tournament selection example.
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7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• Another standard method is roulette wheel selection.

• This concept is patterned after a roulette wheel used in a 
casino.

• It assigns better points to a larger sector on the roulette wheel 
to have a higher probability of being selected.

• First, the objective function for all the points in the population 
must be converted to a fitness value because the roulette wheel 
needs all positive values and is based on maximizing rather 
than minimizing.

• To achieve that, the following conversion to fitness is first 
performed:

(5.19)𝐹 =
−𝑓𝑖 + ∆𝐹

max(1, ∆𝐹 − 𝑓𝑙𝑜𝑤)
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7. Genetic algorithms
7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

where F= 1.1fhigh-o.1flow is based on the highest and lowest 
function values in the population, and the denominator is 
introduced to scale the fitness.

• Then, to find the sizes of the sectors in the roulette wheel 
selection, we take the normalized cumulative sum of the scaled 
fitness values to compute an interval for each member in the 
population j as

(5.20)𝑆𝑗 =
σ𝑖=1

𝑗
𝐹𝑖

σ
𝑖=1

𝑛𝑝 𝐹𝑖
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7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

• We can now create a mating pool of np points by turning the 
roulette wheel np times.

• We do this by generating a random number 0 ≤ r ≤ 1 at each 
turn.

• The jth member is copied to the mating pool if

• This ensures that the probability of a member being selected for 
reproduction is proportional to its scaled fitness value.

(5.21)𝑆𝑗−1 ≤ 𝑟 ≤ 𝑆𝑗
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7.1. Binary-encoded Genetic Algorithms

7.1.2. Selection

Example 5.6: Tournament selection process.

• Assume that F=[5,10,20,45]. Then S=[0.25,0.3125,0.875,1], 
which divides the “wheel” into four segments, shown 
graphically in Fig. 5.24. We would then draw four random 
numbers (say, 0.6, 0.2, 0.9, 0.7), which would correspond to 
the following np/2 pairs: (x3 and x1), (x4 and x3).
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Figure 5.24 Roulette wheel selection example.
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7.1. Binary-encoded Genetic Algorithms

7.1.3. Crossover

• In the reproduction operation, two 
points (offspring) are generated from a 
pair of points (parents).

• Various strategies are possible in 
genetic algorithms.

• Single-point crossover usually involves 
generating a random integer 1 ≤ k ≤ m-
1 that defines the crossover point.

• This is illustrated in Fig. 5.25.

• For one of the offspring, the first k bits 
are taken from parent 1 and the 
remaining bits from parent 2.
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7.1. Binary-encoded Genetic Algorithms

7.1.3. Crossover

• For the second offspring, the first k bits are taken from parent 2 
and the remaining ones from parent 1.

• Various extensions exist, such as two-point crossover or n-point 
crossover.
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7.1. Binary-encoded Genetic Algorithms

7.1.4. Mutation

• Mutation is a random operation performed to change the 
genetic information and is needed because even though 
selection and reproduction effectively recombine existing 
information, occasionally some useful genetic information 
might be lost.

• The mutation operation protects against such irrecoverable loss 
and introduces additional diversity into the population.

• When using bit representation, every bit is assigned a small 
permutation probability, say p=0.005~0.05.

• This is done by generating a random number 0 ≤ r ≤ 1 for each 
bit, which is changed if r < p.
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7.1. Binary-encoded Genetic Algorithms

7.1.4. Mutation

• An example is illustrated in Fig. 5.26.
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Figure 5.26 Mutation randomly switches some of the bits with low 

probability.
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7.2. Real-encoded Genetic Algorithms

• As the name implies, real-encoded GAs represent the design 
variables in their original representation as real numbers.

• This has several advantages over the binary-encoded approach. 

• First, real encoding represents numbers up to machine 
precision rather than being limited by the initial choice of string 
length required in binary encoding.

• Second, it avoids the “Hamming cliff” issue of binary encoding, 
which is caused by the fact that many bits must change to move 
between adjacent real numbers (e.g., 0111 to 1000).

• Third, some real-encoded GAs can generate points outside the 
design variable bounds used to create the initial population; in 
many problems, the design variables are not bounded.

• Finally, it avoids the burden of binary coding and decoding.
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7.2. Real-encoded Genetic Algorithms

• The main disadvantage is that integer or discrete variables 
cannot be handled straightforwardly.

• For continuous problems, a real-encoded GA is generally more 
efficient than a binary-encoded GA.

• We now describe the required changes to the GA operations in 
the real-encoded approach.
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7.2. Real-encoded Genetic Algorithms

7.2.1. Initial population

• The most common approach is to pick the np points using 
random sampling within the provided design bounds.

• Each member is often chosen at random within some initial 
bounds.

• For each design variable xi, with bounds such that 𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖, 

we could use

where r is a random number such that 0 ≤ r ≤ 1.

• Again, the sampling methods described in Chapter 6.? are more 
effective for higher dimensional spaces.

(5.22)𝑥𝑖 = 𝑥𝑖 + 𝑟(𝑥𝑖 − 𝑥𝑖)
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7.2. Real-encoded Genetic Algorithms

7.2.2. Selection

• The selection operation does not depend on the design variable 
encoding.

• Therefore, we can use one of the selection approaches described 
for the binary-encoded GA: tournament or roulette wheel 
selection.
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7.2.3. Crossover

• When using real encoding, the term crossover does not 
accurately describe the process of creating the two offspring 
from a pair of points.

• Instead, the approaches are more accurately described as a 
blending, although the name crossover is still often used.

• There are various options for the reproduction of two points 
encoded using real numbers.

• A standard method is linear crossover, which generates two or 
more points in the line defined by the two parent points.

• One option for linear crossover is to generate the following two

• points:

(5.23)
𝑥𝑐1

= 0.5𝑥𝑝1
+ 0.5𝑥𝑝2

𝑥𝑐2
= 2𝑥𝑝2

− 0.5𝑥𝑝1
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7.2. Real-encoded Genetic Algorithms

7.2.3. Crossover

where parent 2 is more fit than parent 1 
(f(xp2)<f(xp1)).

• An example of this linear crossover 
approach is shown in Fig. 5.27, where 
we can see that child 1 is the average 
of the two parent points, whereas 
child 2 is obtained by extrapolating in 
the direction of the “fitter” parent.

• Another option is a simple crossover 
like the binary case where a random 
integer is generated to split the 
vectors - for example, with a split 
after the first index:
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Figure 5.27 Linear 

crossover produces two new 

points along the line defined 

by the two parent points.
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7.2.3. Crossover

• This simple crossover does not generate as much diversity as 
the binary case and relies more heavily on effective mutation. 

• Many other strategies have been devised for real-encoded GAs.

(5.24)

𝑥𝑝1
= 𝑥1, 𝑥2, 𝑥3, 𝑥4

𝑥𝑝2
= 𝑥5, 𝑥6, 𝑥7, 𝑥8

⇓
𝑥𝑐1

= 𝑥1, 𝑥6, 𝑥7, 𝑥8

𝑥𝑐2
= 𝑥5, 𝑥2, 𝑥3, 𝑥4
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7.2. Real-encoded Genetic Algorithms

7.2.4. Mutation

• As with a binary-encoded GA, mutation should only occur with 
a small probability (e.g., p=0.0005~0.05).

• However, rather than changing each bit with probability p, we 
now change each design variable with probability p.

• Many mutation methods rely on random variations around an 
existing member, such as a uniform random operator:

where ri is a random number between 0 and 1, and i is a 
preselected maximum perturbation in the ith direction.

• Many nonuniform methods exist as well.

(5.25)𝑥𝑛𝑒𝑤𝑖
= 𝑥𝑖 + 𝑟𝑖 − 0.5 ∆𝑖 ,  𝑓𝑜𝑟 𝑖 = 1, … 𝑛
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7.2.4. Mutation

• For example, we can use a normal probability distribution

where i is a preselected standard deviation, and random samples 
are drawn from the normal distribution.

• During the mutation operations, bound checking is necessary to 
ensure the mutations stay within the lower and upper limits.

(5.26)𝑥𝑛𝑒𝑤𝑖
= 𝑥𝑖 + 𝒩 0, 𝜎𝑖 ,  𝑓𝑜𝑟 𝑖 = 1, … 𝑛
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Example 5.7: Genetic algorithm applied to the bean function.
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Figure 5.28 Evolution of the population using a bit-encoded GA to minimize the bean function, where 

k is the generation number.
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Example 5.7: Genetic algorithm applied to the bean function.
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Figure 5.29 Evolution of the population using a real-encoded GA to minimize the bean function, 

where k is the generation number.
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7.3. Constraint handling

• Various approaches exist for handling constraints.

• Like the Nelder–Mead method, we can use a penalty method 
(e.g., augmented Lagrangian, linear penalty).

• However, there are additional options for GAs.

• In the tournament selection, we can use other selection criteria 
that do not depend on penalty parameters.

• One such approach for choosing the best selection among two 
competitors is as follows:

1. Prefer a feasible solution.

2. Among two feasible solutions, choose the one with a better 
objective.

3. Among two infeasible solutions, choose the one with a smaller 
constraint violation.

• This concept is a lot like the filter methods.
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7.4. Convergence

• Rigorous mathematical convergence criteria, like those used in 
gradient-based optimization, do not apply to GAs.

• The most common way to terminate a GA is to specify a 
maximum number of iterations, which corresponds to a 
computational budget.

• Another similar approach is to let the algorithm run indefinitely 
until the user manually terminates the algorithm, usually by 
monitoring the trends in population fitness.

• A more automated approach is to track a running average of the 
population’s fitness.

• However, it can be challenging to decide what tolerance to 
apply to this criterion because we generally are not interested in 
the average performance.
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7.4. Convergence

• A more direct metric of interest is the fitness of the best 
member in the population.

• However, this can be a problematic criterion because the best 
member can disappear as a result of crossover or mutation.

• To avoid this and to improve convergence, many GAs employ 
elitism.

• This means that the fittest population member is retained to 
guarantee that the population does not regress.

• Even without this behaviour, the best member often changes 
slowly, so the user should not terminate the algorithm unless 
the best member has not improved for several generations.
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• Like a GA, particle swarm optimization (PSO) is a stochastic 
population-based optimization algorithm based on the concept 
of “swarm intelligence”.

• Swarm intelligence is the property of a system whereby the 
collective behaviours of unsophisticated agents interacting 
locally with their environment cause coherent global patterns.

• In other words: dumb agents, properly connected into a swarm, 
can yield smart results.

• The “swarm” in PSO is a set of design points (agents or 
particles) that move in n-dimensional space, looking for the 
best solution.

• Although these are just design points, the history for each point 
is relevant to the PSO algorithm, so the term particle is 
adopted. 
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• Each particle moves according to a velocity.

• This velocity changes according to the past objective function 
values of that particle and the current objective values of the 
rest of the particles.

• Each particle remembers the location where it found its best 
result so far, and it exchanges information with the swarm 
about the location where the swarm has found the best result so 
far.

• The position of particle i for iteration k+1 is updated according 
to

where t is a constant artificial time step. 

(5.27)𝑥𝑘+1
(𝑖)

= 𝑥𝑘
(𝑖)

+ 𝑣𝑘+1
(𝑖)

∆𝑡
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• The velocity for each particle is updated as follows:

• The first component in this update is the “inertia”, which 
determines how similar the new velocity is to the velocity in the 
previous iteration through the parameter .

• Typical values for the inertia parameter are in the interval 
[0.8,1.2].

• A lower value of  reduces the particle’s inertia and tends 
toward faster convergence to a minimum.

• A higher value of  increases the particle’s inertia and tends 
toward increased exploration to potentially help discover 
multiple minima.

(5.28)𝑣𝑘+1
(𝑖)

= 𝛼𝑣𝑘
(𝑖)

+ 𝛽
𝑥𝑏𝑒𝑠𝑡

(𝑖)
− 𝑥𝑘

(𝑖)

∆𝑡
+ 𝛾

𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑘
(𝑖)

∆𝑡
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• Some methods are adaptive, choosing the value of  based on 
the optimizer’s progress.

• The second term represents “memory” and is a vector pointing 
toward the best position particle i has seen in all its iterations 

so far, 𝑥𝑏𝑒𝑠𝑡
(𝑖)

.

• The weight in this term consists of a random number  in the 
interval [0,max] that introduces a stochastic component to the 
algorithm.

• Thus,  controls how much influence the best point found by 
the particle so far has on the next direction.

• The third term represents “social” influence.
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• It behaves similarly to the memory component, except that xbest 
is the best point the entire swarm has found so far, and  is a 
random number between [0,max]  that controls how much of an 
influence this best point has in the next direction.

• The relative values of  and  thus control the tendency toward 
local versus global search, respectively.

• Both  max and  max are in the interval [0,] and are typically 
closer to 2.

• Sometimes, rather than using the best point in the entire 
swarm, the best point is chosen within a neighbourhood.

• Because the time step is artificial, we can eliminate it by 
multiplying Eq. 5.28 by t to yield a step:

(5.29)∆𝑥𝑘+1
(𝑖)

= 𝛼∆𝑥𝑘
(𝑖)

+ 𝛽 𝑥𝑏𝑒𝑠𝑡
(𝑖)

− 𝑥𝑘
(𝑖)

+ 𝛾 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑘
(𝑖)
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• We then use this step to update the particle position for the 
next iteration:

• The three components of the update in Eq. 5.29 are shown in 
Fig. 5.30 for a two-dimensional case.

(5.30)𝑥𝑘+1
(𝑖)

= 𝑥𝑘
(𝑖)

+ ∆𝑥𝑘+1
(𝑖)
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Figure 5.30 Components of the PSO update.
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• The first step in the PSO algorithm is to initialize the set of 
particles (Algorithm 5.6).

• As with a GA, the initial set of points can be determined 
randomly or can use a more sophisticated sampling strategy 
(see Chapter 6.? ).

• The velocities are also randomly initialized, generally using 
some fraction of the domain size (𝑥 − 𝑥).

• The main loop in the algorithm computes the steps to be added 
to each particle and updates their positions.

• Particles must be prevented from going beyond the bounds.

• If a particle reaches a boundary and has a velocity pointing out 
of bounds, it is helpful to reset the velocity to zero or reorient it 
toward the interior for the next iteration.
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Algorithm 5.6: Particle swarm optimization algorithm.
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• It is also helpful to impose a maximum velocity.

• If the velocity is too large, the updated positions are unrelated 
to their previous positions, and the search is more random.

• The maximum velocity might also decrease across iterations to 
shift from exploration toward exploitation.

• Several convergence criteria are possible, some of which are 
similar to the Nelder–Mead algorithm and GAs.

• Examples of convergence criteria include the distance (sum or 
norm) between each particle and the best particle, the best 
particle’s objective function value changes for the last few 
generations, and the difference between the best and worst 
member.
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• For PSO, another alternative is to check whether the velocities 
for all particles (as measured by a metric such as norm or 
mean) are below some tolerance.

• Some of these criteria that assume all the particles congregate 
(distance, velocities) do not work well for multimodal 
problems.

• In those cases, tracking only the best particle’s objective 
function value may be more appropriate.
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Example 5.8: PSO algorithm applied to the bean function.
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Figure 5.31 Sequence of particles at iterations : that minimizes the bean function.
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9. Hybrid Metaheuristic Algorithms

• The hybridization of evolutionary algorithms (EA) is popular, 
partly due to its better performance in handling noise, 
uncertainty, vagueness, and imprecision.

• There are two prominent issues of EAs in solving global and 
highly nonconvex optimization problems:

1. Premature convergence: The problem of premature convergence 
results in the lack of accuracy of the final solution. The final 
solution is a feasible solution close to the global optimal, often 
regarded as satisfactory or close-to-optimal solution.

2. Slow convergence: Slow convergence means the solution quality 
does not improve sufficiently quickly. It shows stagnation or 
almost flatness on a convergence graph (either a single iteration 
or the average of multiple iterations).
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• Hybrid algorithms are two or more algorithms that run 
together and complement each other to produce a profitable 
synergy from their integration.

• These algorithms are commonly known as hybrid 
metaheuristics (HMs) or hybrid algorithms (HA) for simplicity.

• Hybrid algorithms play a prominent role in improving the 
search capability of algorithms.

• Hybridization aims to combine the advantages of each 
algorithm to form a hybrid algorithm, while simultaneously 
trying to minimize any substantial disadvantage.

• In general, the outcome of hybridization can usually make some 
improvements in terms of either computational speed or 
accuracy.
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• See book chapter for further details:

– T. O. Ting, Xin-She Yang, Shi Cheng, Kaizhu Huang, “Hybrid 
Metaheuristic Algorithms: Past, Present, and Future”, in book: 
Recent Advances in Swarm Intelligence and Evolutionary 
Computation, December 2015, DOI: 10.1007/978-3-319-13826-
8_4.
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10. Penalty Methods

• The concept behind penalty methods is intuitive: to transform a 
constrained problem into an unconstrained one by adding a 
penalty to the objective function when constraints are violated. 

• Penalty methods are no longer used directly in gradient-based 
optimization algorithms because they have difficulty converging 
to the true solution.

• However, these methods are still valuable because:

1. they are simple and thus ease the transition into understanding 
constrained optimization

2. although not effective for gradient-based optimization, they are 
still useful in some constrained gradient-free methods

3. they can be useful as merit functions in line search algorithms
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• The penalized function can be written as

where (x) is a penalty function, and the scalar  is a penalty 
parameter.

• This is similar in form to the Lagrangian, but one difference is 
that a value for  is fixed in advance instead of solved for.

• We can use the unconstrained optimization techniques to 

minimize መ𝑓 𝑥 .

• However, instead of just solving a single optimization problem, 
penalty methods usually solve a sequence of problems with 
different values of  to get closer to the actual constrained 
minimum.

(5.31)መ𝑓 𝑥 = 𝑓(𝑥) + 𝜇𝜋(𝑥)
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• We will see shortly why we need to solve a sequence of 
problems rather than just one problem.

• Various forms for (x) can be used, leading to different penalty 
methods.

• There are two main types of penalty functions: 

– Exterior penalties, which impose a penalty only when constraints 
are violated

– Interior penalty functions, which impose a penalty that increases 
as a constraint is approached

• Figure 5.32 shows both interior and exterior penalties for a 
two-dimensional function.

• The exterior penalty leads to slightly infeasible solutions, 
whereas an interior penalty leads to a feasible solution but 
underpredicts the objective.
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infinity as the constraint is approached 
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activate when the points are not feasible 
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minimum.
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10.1. Exterior penalty method

• Of the many possible exterior penalty methods, we focus on two 
of the most popular ones:

– quadratic penalties

– augmented Lagrangian method

• Quadratic penalties are continuously differentiable and 
straightforward to implement, but they suffer from numerical 
ill-conditioning.

• The augmented Lagrangian method is more sophisticated; it is 
based on the quadratic penalty but adds terms that improve the 
numerical properties.

• Many other penalties are possible, such as 1-norms, which are 
often used when continuous differentiability is unnecessary.
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10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• For equality constrained problems, the quadratic penalty 
method takes the form

where the semicolon denotes that  is a fixed parameter.

• The motivation for a quadratic penalty is that it is simple and 
results in a function that is continuously differentiable.

• The factor of one half is unnecessary but is included by 
convention because it eliminates the extra factor of two when 
taking derivatives.

• The penalty is nonzero unless the constraints are satisfied 
(hi=0), as desired.

(5.32)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) +
𝜇

2
෍

𝑖

𝑛ℎ

ℎ𝑖(𝑥)2
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10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• The value of the penalty parameter  must be chosen carefully.

• Mathematically, we recover the exact solution to the 
constrained problem only as  tends to infinity (see Fig. 5.27).

• However, starting with a large value for  is not practical.
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Figure 5.33 Quadratic penalty for an 

equality constrained one-dimensional 

problem. The minimum of the 

penalized function (black dots) 

approaches the true constrained 

minimum (blue circle) as the penalty 

parameter  increases.
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10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• This is because the larger the value of , the larger the Hessian 
condition number, which corresponds to the curvature varying 
greatly with direction.

• This behaviour makes the problem difficult to solve 
numerically.

• To solve the problem more effectively, we begin with a small 
value of  and solve the unconstrained problem.

• We then increase  and solve the new unconstrained problem, 
using the previous solution as the starting point.

• We repeat this process until the optimality conditions are 
satisfied (or some other approximate convergence criteria are 
satisfied), as outlined in Algoritm 5.7.
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10.1. Exterior penalty method

10.1.1. Quadratic penalty method

Algorithm 5.7: Exterior penalty method.



143

10. Penalty Methods
10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• By gradually increasing  and reusing the solution from the 
previous problem, we avoid some of the ill-conditioning issues. 

• Thus, the original constrained problem is transformed into a 
sequence of unconstrained optimization problems.

• There are three potential issues with the approach outlined in 
Algorithm 5.7.

• Suppose the starting value for  is too low.

• In that case, the penalty might not be enough to overcome a 
function that is unbounded from below, and the penalized 
function has no minimum.

• The second issue is that we cannot practically approach) 𝜇 → ∞.

• Hence, the solution to the problem is always slightly infeasible. 
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10.1. Exterior penalty method

10.1.1. Quadratic penalty method

• The third issue has to do with the curvature of the penalized 
function, which is directly proportional to .

• The extra curvature is added in a direction perpendicular to the 
constraints, making the Hessian of the penalized function 
increasingly ill-conditioned as  increases.

• Thus, the need to increase  to improve accuracy directly leads 
to a function space that is increasingly challenging to solve.
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10.1. Exterior penalty method

10.1.1. Quadratic penalty method

Example 5.9: Quadratic penalty for equality constrained 
problem.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 +
𝜇

2

1

2
𝑥1

2 + 𝑥2
2 − 1 

2
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Figure 5.34 Quadratic penalty for one equality constraint. The minimum of the penalized function 

approaches the constrained minimum as the penalty parameter increases..
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Example 5.9: Quadratic penalty for equality constrained problem 
(continued).

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 +
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Figure 5.35 Error in optimal solution as compared to 

true solution as a function of an increasing penalty 

parameter.
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• The approach discussed so far handles only equality 
constraints, but it can be extended to handle inequality 
constraints.

• Instead of adding a penalty to both sides of the constraints, we 
add the penalty when the inequality constraint is violated (i.e., 
when gj(x)>0).

• This behaviour can be achieved by defining a new penalty 
function as

(5.33)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) +
𝜇

2
෍

𝑗

𝑛𝑔

𝑚𝑎𝑥 0, 𝑔𝑗(𝑥)
2
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• The only difference relative to the equality constraint penalty 
shown in Fig. 5.33 is that the penalty is removed on the feasible 
side of the inequality constraint, as shown in Fig. 5.36. 
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Figure 5.36 Quadratic penalty for an 

inequality constrained one-

dimensional problem. The minimum

of the penalized function approaches 

the constrained minimum from the 

infeasible side.
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Example 5.10: Quadratic penalty for inequality constrained 
problem.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 +
𝜇

2
𝑚𝑎𝑥 0,

1

2
𝑥1

2 + 𝑥2
2 − 1

2

S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1

Figure 5.37 Quadratic penalty for one inequality constraint. The minimum of the penalized function 

approaches the constrained minimum from the infeasible side.
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• The inequality quadratic penalty can be used together with the 
quadratic penalty for equality constraints if both types of 
constraints need to be handled

• The two penalty parameters can be incremented in lockstep or 
independently.

(5.34)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) +
𝜇ℎ

2
෍

𝑖

𝑛ℎ

ℎ𝑖(𝑥)2 +
𝜇𝑔

2
෍

𝑗

𝑛𝑔

𝑚𝑎𝑥 0, 𝑔𝑗(𝑥)
2
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• Scaling is also important for constrained problems.

• Similar to scaling the objective function, a good scaling rule of 
thumb is to normalize such that each constraint function is of 
order 1.

• For constraints, a natural scale is typically already defined by 
the limits we provide.

• For example, instead of

a scaled version can be expressed as

(5.35)𝑔𝑗 𝑥 − 𝑔𝑚𝑎𝑥𝑗
≤ 0

(5.36)
𝑔𝑗 𝑥

𝑔𝑚𝑎𝑥𝑗

− 1 ≤ 0
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10.1.2. Augmented Lagrangian

• As explained previously, the quadratic penalty method requires 
a large value of  for constraint satisfaction, but the large  
degrades the numerical conditioning.

• The augmented Lagrangian method helps alleviate this 
dilemma by adding the quadratic penalty to the Lagrangian 
instead of just adding it to the function.

• The augmented Lagrangian function for equality constraints is

• Unfortunately, the Lagrange multipliers cannot be solved for in 
a penalty approach, so we need some way to estimate them.

• In other words, they are a parameter in this case, not a variable.

(5.37)መ𝑓 𝑥; 𝜆, 𝜇 = 𝑓(𝑥) + ෍

𝑗=1

𝑛ℎ

𝜆𝑖ℎ𝑖(𝑥) +
𝜇ℎ

2
෍

𝑗=1

𝑛ℎ

ℎ𝑖(𝑥)2
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10.1.2. Augmented Lagrangian

• To obtain an estimate of the Lagrange multipliers, we can 
compare the optimality conditions for the augmented 
Lagrangian,

to those of the actual Lagrangian,

which suggests the approximation

(5.38)∇𝑥
መ𝑓 𝑥; 𝜆, 𝜇 = ∇𝑓 𝑥 + ෍

𝑗=1

𝑛ℎ

𝜆𝑗 + 𝜇ℎ𝑗 𝑥 𝜆𝑗∇ℎ𝑗 = 0

(5.39)∇𝑥ℒ 𝑥∗, 𝜆∗ = ∇𝑓 𝑥∗ + ෍

𝑗=1

𝑛ℎ

𝜆𝑗
∗∇ℎ𝑗 𝑥∗ = 0

(5.40)𝜆𝑗
∗ ≈ 𝜆𝑗 + 𝜇ℎ𝑗
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10.1.2. Augmented Lagrangian

• Therefore, we update the vector of Lagrange multipliers based 
on the current estimate of the Lagrange multipliers and 
constraint values using

• The complete algorithm is shown in Algorithm 5.8.

(5.41)𝜆𝑘+1 = 𝜆𝑘 + 𝜇𝑗ℎ 𝑥𝑘
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Algorithm 5.8: Augmented Lagrangian penalty method
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10.1.2. Augmented Lagrangian

• This approach is an improvement on the plain quadratic 
penalty because updating the Lagrange multiplier estimates at 
each iteration allows for more accurate solutions without 
increasing  as much.

• Comparing the augmented Lagrangian approximation to the 
constraints obtained from Eq. 5.40,

with the corresponding approximation in the quadratic penalty 
method

(5.42)ℎ𝑗 ≈
1

𝜇
𝜆𝑗

∗ − 𝜆𝑗

(5.43)ℎ𝑗 ≈
𝜆𝑗

∗

𝜇
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10.1.2. Augmented Lagrangian

• The quadratic penalty relies solely on increasing  in the 
denominator to drive the constraints to zero.

• However, with the augmented Lagrangian, we can also control 
the numerator through the Lagrange multiplier estimate.

• If the estimate is reasonably close to the true Lagrange 
multiplier, then the numerator becomes small for modest 
values of .

• Thus, the augmented Lagrangian can provide a good solution 
for x* while avoiding the ill-conditioning issues of the quadratic 
penalty.
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Example 5.11: Augmented Lagrangian for inequality constrained 
problem.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 + 𝜆
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Figure 5.38 Augmented Lagrangian applied to inequality constrained problem..
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Example 5.11: Augmented Lagrangian for inequality constrained 
problem (continued).

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 + 𝜆
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Figure 5.39 Error in optimal solution as compared 

with true solution as a function of an increasing 

penalty parameter.
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10.1.2. Augmented Lagrangian

• So far we have only discussed equality constraints where the 
definition for the augmented Lagrangian is universal.

• The above example included an inequality constraint by 
assuming it was active and treating it like an equality, but this is 
not an approach that can be used in general.

• An augmented Lagrangian can be used with inequality 
constraints, though many alternative formulations exist. 

• One well-known approach is given by

where

(5.44)መ𝑓 𝑥; 𝜇 = 𝑓(𝑥) + 𝜆𝑇𝑔(𝑥) +
1

2
𝜇 𝑔(𝑥) 2

2

(5.45)𝑔
𝑗
(𝑥) = ൞

ℎ𝑗 𝑥  𝑓𝑜𝑟 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑔𝑗 𝑥  𝑖𝑓𝑔𝑗 ≥ − Τ𝜆𝑗 𝜇

≥ − Τ𝜆𝑗 𝜇  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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10.2. Interior penalty method

• Interior penalty methods work the same way as exterior penalty 
methods - they transform the constrained problem into a series 
of unconstrained problems.

• The main difference with interior penalty methods is that they 
always seek to maintain feasibility.

• Instead of adding a penalty only when constraints are violated, 
they add a penalty as the constraint is approached from the 
feasible region.

• This type of penalty is particularly desirable if the objective 
function is ill-defined outside the feasible region.

• These methods are called interior because the iteration points 
remain on the interior of the feasible region.
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10.2. Interior penalty method

• They are also referred to as barrier methods because the 
penalty function acts as a barrier preventing iterates from 
leaving the feasible region.

• One possible interior penalty function to enforce g(x)≤0 is the 
inverse function (top of Fig. 5.40),

where 𝜋 𝑥 → ∞ as 𝑔𝑗(𝑥) → 0−.
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Figure 5.40 Two different interior barrier functions.

(5.46)𝜋 𝑥 = ෍

𝑗=1

𝑛𝑔

−
1

𝑔𝑗(𝑥)
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10.2. Interior penalty method

• A more popular interior penalty function is the logarithmic 
barrier (bottom of Fig. 5.40),

which also approaches infinity as the constraint tends to zero from 
the feasible side.

• The penalty function is then

• Neither of these penalty functions applies when g>0 because 
they are designed to be evaluated only within the feasible space. 

(5.47)𝜋 𝑥 = ෍

𝑗=1

𝑛𝑔

−𝑙𝑛 −𝑔𝑗(𝑥)

(5.48)መ𝑓 𝑥; 𝜇 = 𝑓 𝑥 − 𝜇 ෍

𝑗=1

𝑛𝑔

𝑙𝑛 −𝑔𝑗(𝑥)
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10.2. Interior penalty method

• Algorithms based on these penalties must be prevented from 
evaluating infeasible points.

• Like exterior penalty methods, interior penalty methods must 
also solve a sequence of unconstrained problems but with 𝜇 → 0 
(see Algorithm 5.8).

• As the penalty parameter decreases, the region across which the 
penalty acts decreases, as shown in Fig. 5.41.
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Figure 5.41 Logarithmic barrier penalty for an 

inequality constrained one-dimensional problem. The 

minimum of the penalized function (black circles) 

approaches the true constrained minimum (blue 

circle) as the penalty parameter  decreases.
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10.2. Interior penalty method

Algorithm 5.8: Interior penalty method.
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10.2. Interior penalty method

• The methodology is the same as is described in Algorithm 5.7 
but with a decreasing penalty parameter.

• One major weakness of the method is that the penalty function 
is not defined for infeasible points, so a feasible starting point 
must be provided.

• For some problems, providing a feasible starting point may be 
difficult or practically impossible.

• The line search must be safeguarded to prevent the algorithm 
from becoming infeasible when starting from a feasible point. 

• This can be achieved by checking the values of the constraints 
and backtracking if any of them is greater than or equal to zero. 

• Multiple backtracking iterations might be required.
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10.2. Interior penalty method

• Like exterior penalty methods, the Hessian for interior penalty 
methods becomes increasingly ill-conditioned as the penalty 
parameter tends to zero.

• There are augmented and modified barrier approaches that can 
avoid the ill-conditioning issue (and other methods that remain 
ill-conditioned but can still be solved reliably, albeit 
inefficiently).

• However, these methods have been superseded by the modern 
interior point methods.
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10.2. Interior penalty method

Example 5.12: Logarithmic penalty for inequality constrained 
problem.
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Figure 5.42 Logarithmic penalty for one inequality constraint. The minimum of the penalized 

function approaches the constrained minimum from the feasible side.

መ𝑓 𝑥; 𝜇 = 𝑥1 + 2𝑥2 − 𝜇𝑙𝑛 −
1

4
𝑥1

2 − 𝑥2
2 + 1
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