
Introduction

Otimização em Engenharia 
(15235)
2º Ciclo/Mestrado em Engenharia Aeronáutica

2024

Pedro V. Gamboa
Departamento de Ciências Aeroespaciais

Faculdade de Engenharia



2

0. Topics

• Terminology, problem statement and classification of 
optimization problems

• Optimization in engineering, multidisciplinary design, and 
aerospace applications

• Methods and algorithms
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1. Concepts in optimization 
problems

• Optimization is fundamental in human activities.

• Even nature tries to optimize its processes: by using less energy 
for flight, by taking the shortest root to a destination, by 
minimizing total energy for stability.

• “The term optimization is often used to mean “improvement”, but 
mathematically, it is a much more precise concept: finding the best possible 
solution by changing variables that can be controlled, often subject to 
constraints. Optimization has a broad appeal because it is applicable in all 
domains […]. Any problem where a decision needs to be made can be cast as 
an optimization problem.” (Martins et Ning, 2021)

• “Although some simple optimization problems can be solved analytically, 
most practical problems of interest are too complex to be solved this way. 
The advent of numerical computing, together with the development of 
optimization algorithms, has enabled us to solve problems of increasing 
complexity.” (Martins et Ning, 2021)
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1. Concepts in optimization 
problems

• Optimization problems occur in many areas:

– Economics

– Political Science

– Management

– Manufacturing

– Biology

– Physics

– Engineering

• The focus in this course will be on the optimization of 
engineering systems, even though the methods described may 
be used and are useful in other areas.
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1. Concepts in optimization 
problems

• Design optimization problems are common in the various 
engineering disciplines:

– wing design in aerospace engineering

– process control in chemical engineering

– structural design in civil engineering

– circuit design in electrical engineering

– mechanism design in mechanical engineering

• Most engineering systems rarely work in isolation and are 
linked to other systems.

• This gave rise to the field of multidisciplinary design 
optimization (MDO), which applies numerical optimization 
techniques to the design of engineering systems that involve 
multiple disciplines.
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1. Concepts in optimization problems

1.1. Design optimization process

• Engineering design is an iterative 
process that engineers use to develop a 
product developed for a given task.

• For complex products, the design 
process involves teams of engineers with 
different expertise and multiple phase 
which may be iterative and be nested.

• The design process is divided into a 
sequence of phases.

• Fig. 1.01 shows a high-level schematic of 
the design process.

Figure 1.01 Design process.
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1. Concepts in optimization problems

1.1. Design optimization process

• Design optimization is a tool that can be used to replace an 
iterative design process to accelerate the design cycle and 
obtain better results.

• Fig. 1.02 shows a classical simplified single iterative loop design 
process. In this process, engineers make decisions at every 
stage based on intuition and background knowledge.

Figure 1.02 Classical engineering design process.
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1. Concepts in optimization problems

1.1. Design optimization process

• At each iteration, the design must be evaluated.

• The evaluation of a given design in engineering is often called 
the analysis. Engineers and computer scientists also refer to it 
as simulation.

• The design optimization process can be represented using a 
flow diagram as shown in Fig. 1.02.

• The determination of the specifications and the initial design 
are no different from the conventional design process. 
However, design optimization requires a formal formulation of 
the optimization problem that includes the design variables 
that are to be changed, the objective to be minimized, and the 
constraints that need to be satisfied.

• The evaluation of the design is strictly based on numerical 
values for the objective and constraints.
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1. Concepts in optimization problems

1.1. Design optimization process

Figure 1.03 Design optimization process.
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1. Concepts in optimization problems

1.1. Design optimization process

• When a rigorous optimization algorithm is used, the decision to 
finalize the design is made only when the current design 
satisfies the optimality conditions that ensure that no other 
design in the vicinity is better.

• The design changes are made automatically by the optimization 
algorithm and do not require intervention from the designer.

• This automated process does not usually provide a “push-
button” solution; it requires human intervention and expertise 
(often more expertise than in the traditional process).

• Human decisions are still needed in the design optimization 
process.

• Before running an optimization, in addition to determining the 
specifications and initial design, engineers need to formulate 
the design problem.
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1. Concepts in optimization problems

1.1. Design optimization process

• This requires expertise in both the subject area and numerical 
optimization.

• The designer must decide what the objective is, which 
parameters can be changed, and which constraints must be 
enforced.

• These decisions have profound effects on the outcome, so it is 
crucial that the designer formulates the optimization problem 
well.

• After the optimization is complete, the designer must assess the 
results, because there is no guarantee the obtained final the 
design is the required one.

• It may be necessary to reformulate the optimization problem or 
to change (increase or reduce) the fidelity of the analysis tools.
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1. Concepts in optimization problems

1.1. Design optimization process

• This requires expertise in both the subject area and numerical 
optimization.

• The designer must decide what the objective is, which 
parameters can be changed, and which constraints must be 
enforced.

• These decisions have profound effects on the outcome, so it is 
crucial that the designer formulates the optimization problem 
well.

• After the optimization is complete, the designer must assess the 
results, because there is no guarantee the obtained final the 
design is the required one.

• It may be necessary to reformulate the optimization problem or 
to change (increase or reduce) the fidelity of the analysis tools.
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1. Concepts in optimization problems

1.1. Design optimization process

• Post-optimality studies may also be used to interpret the 
optimal design and assess design trends.

• This might be done by performing parameter studies, where 
design variables or other parameters are varied to quantify 
their effect on the objective and constraints.

• It is also possible to compute post-optimality sensitivities to 
evaluate which design variables are the most influential or 
which constraints drive the design.

• These sensitivities can inform where engineers might best 
allocate resources to alleviate the driving constraints in future 
designs.
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1. Concepts in optimization problems

1.1. Design optimization process

• Several advantages of design 
optimization arise, as shown in 
Fig. 1.04, which shows the 
notional variations of system 
performance, cost, and 
uncertainty as a function of time 
in design.

• The gains are increased in MDO 
problems.

Figure 1.04 Advantages of design optimization over 

classical design process.
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1. Concepts in optimization problems

1.2. Optimization problem formulation

• The design optimization process requires the designer to 
translate their intent to a mathematical statement that can then 
be solved by an optimization algorithm.

• Developing this statement has the added benefit that it helps 
the designer better understand the problem. Being methodical 
in the formulation of the optimization problem is vital because 
the optimizer tends to exploit any weaknesses you might have 
in your formulation or model.

• An inadequate problem formulation can either cause the 
optimization to fail or cause it to converge to a mathematical 
optimum that is undesirable or unrealistic from an engineering 
point of view – the proverbial “right answer to the wrong 
question”.
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1. Concepts in optimization problems

1.2. Optimization problem formulation

• Fig. 1.05 outlines the sequence to formulate 
the optimization problem.

• It is also essential to identify the analysis 
procedure and gather information on that as 
well.

• The analysis might consist of a simple model 
or a set of elaborate tools. All the possible 
inputs and outputs of the analysis should be 
identified, and its limitations should be 
understood.

• The computational time for the analysis 
needs to be considered because optimization 
requires repeated analysis.

Figure 1.05 Steps in optimization problem
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.1. Design variables

• The next step is to identify the variables that describe the 
system, the design variables, which we represent by the column 
vector

• This vector defines a given design, so different vectors x 
correspond to different designs. The number of variables, nx, 
determines the problem’s dimensionality.

• The design variables must not depend on each other or any 
other parameter, and the optimizer must be free to choose the 
components of x independently.

• This means that in the analysis of a given design, the variables 
must be input parameters that remain fixed throughout the 
analysis process.

𝑥 = 𝑥1, 𝑥1, … , 𝑥𝑛𝑥

𝑇

(1.01)
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.1. Design variables

• The first consideration in the definition of the allowable design 
variable values is whether the design variables are continuous 
or discrete.

• Continuous design variables are real numbers that are allowed 
to vary continuously within a specified range with no gaps, 
which we write as

• These are known as bound constraints or side constraints. 
Some design variables may be unbounded or bounded on only 
one side.

• When all the design variables are continuous, the optimization 
problem is said to be continuous.

𝑥𝑙,𝑖  ≤ 𝑥𝑖 ≤ 𝑥𝑢,𝑖;  𝑖 = 1, … , 𝑛𝑥 (1.02)
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.1. Design variables

• When one or more variables are allowed to have discrete values, 
whether real or integer, we have a discrete optimization 
problem.

• An example of a discrete design variable is structural sizing, 
where only components of specific thicknesses or cross-
sectional areas are available.

• Integer design variables are a special case of discrete variables 
where the values are integers, such as the number of wheels on 
a vehicle.

• A small allowable range in the design variable values should 
make the optimization easier.

• However, design variable bounds should be based on actual 
physical constraints instead of being artificially limited. 
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.1. Design variables

• An example of a physical constraint is a lower bound on 
structural thickness in a weight minimization problem, where 
otherwise, the optimizer will discover that negative sizes yield 
negative weight.

• Whenever a design variable converges to the bound at the 
optimum, the designer should reconsider the reasoning for that 
bound and make sure it is valid.

• This is because designers sometimes set bounds that limit the 
optimization from obtaining a better objective.

• At the formulation stage, we should strive to list as many 
independent design variables as possible. However, it is 
advisable to start with a small set of variables when solving a 
problem for the first time and then gradually expand the set of 
design variables.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.1. Design variables

Example 1.1: Design variables for a wing design.

Figure 1.06 Design variables in two options: x=[b,c]T or x=[S,AR]T.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.2. Objective function

• To find the best design, a quantifiable criterion is necessary to 
determine if one design is better than another – the objective 
function.

• The objective function must be a scalar that is computable for a 
given design variable vector x.

• The objective function can be minimized or maximized, 
depending on the problem.

• For example, a designer might want to minimize the weight or 
cost of a given structure. An example of a function to be 
maximized could be the range of a vehicle.

• Mos often, the objective function f is to be minimized.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.2. Objective function

• This does not prevent us from maximizing a function because 
we can reformulate it as a minimization problem by finding the 
minimum of the negative of f and then changing the sign, as 
follows

max 𝑓 𝑥 = −min −𝑓 𝑥 (1.03)

Figure 1.07 Maximize f or minimize -f.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.2. Objective function

• The computation of f is performed through a numerical model.

• The choice of the objective function is crucial to optimize the 
problem at hand.

• If the objective function does not represent well the problem or 
it does not capture the nuances of the problem, the designer 
will not obtain a good result, even if the function is very precise.

• Such example could be by using weight minimization of 
manufacturing costs minimization of a given aircraft design.

• Sometimes, multiobjective optimization problems are 
convenient.

• Trying different optimization objectives is part of the design 
exploration process. This helps select the best objective.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.2. Objective function

• Contour plots can be used to visualize the objective function in 
2D design spaces.

• Larger dimensionality of the design spaces are not easy to 
represent.

Figure 1.08 Function f=x1
2+x2

2, in surface representation and contour representation.

S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1



26

1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.2. Objective function

Example 1.2: Objective function for a wing design.

Figure 1.09 Power minimization for two design variables’ sets. The optimal wing is the 

same for both cases, but the functional form of the objective is simplified in the one on 

the right.

S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1



27

1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.3. Constraints

• The vast majority of practical design optimization problems 
require the enforcement of constraints.

• These are functions of the design variables that we want to 
restrict in some way. Like the objective function, constraints are 
computed through a model whose complexity can vary widely.

• The feasible region is the set of points that satisfy all 
constraints.

• We seek to minimize the objective function within this feasible 
design space.

• When we restrict a function to being equal to a fixed value, we 
call this an equality constraint, denoted by h(x)=0.

• When the function is required to be less than or equal to a 
certain value, we have an inequality constraint, denoted by 
g(x)≤0



28

1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.3. Constraints

• Although we use “less or equal” by convention, you should be 
aware that some other texts and software programs use “greater 
or equal” instead.

• There is no loss of generality with either convention because we 
can always multiply the constraint by -1 to convert between the 
two.

• Inequality constraints can be active or inactive at the optimum 
point.

• An active inequality constraint means that g(x*)=0, whereas for 
an inactive one, g(x*)<0.

• If a constraint is inactive at the optimum, this constraint could 
have been removed from the problem with no change in its 
solution, as illustrated in Fig. 1.10.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.3. Constraints

• In this case, constraints g2 and g3 can be removed without 
affecting the solution of the problem.

• Furthermore, active constraints (g1 in this case) can 
equivalently be replaced by equality constraints.

Figure 1.10 Two-dimensional problem with two inactive and one active constraint.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.3. Constraints

• It is possible to overconstrain a problem, rendering a non-
feasible solution.

• This can result from programming errors or can happen at the 
problem formulation stage.

• When it is not possible to satisfy all constrains it may be 
necessary to omit or relax some of them.

• To prevent this, the number of independent equality 
constraints must be less than or equal to the design variables 
(nh≤nx).

• There is no limit on the inequality constraints, but the sum of 
active inequality constraints with the equality constrains must 
still be less than or equal to the number of design variables.

• The feasible region grows as the number of constraints reduces, 
and the objective function usually improves.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.3. Constraints

Example 1.3: Constraints for a wing design.

Figure 1.11 Minimum-power wing with a constraint on wing bending stress compared 

with the unconstrained solution.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.4. Optimization problem statement

• Now that we have discussed the definition of design variables, 
the objective function, and constraints, we can put them all 
together in an optimization problem statement.

• In words, this statement is as follows: minimize the objective 
function by varying the design variables within their bounds 
subject to the constraints.

• Mathematically, we write this as follows

(1.04)

minimize
by varying

subjected to

𝑓(𝑥)
𝑥𝑙,𝑖  ≤ 𝑥𝑖 ≤ 𝑥𝑢,𝑖

𝑔𝑗(𝑥)  ≤ 0

ℎ𝑙 𝑥 = 0

𝑖 = 1, … , 𝑛𝑥

𝑗 = 1, … , 𝑛𝑔

𝑙 = 1, … , 𝑛ℎ
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.4. Optimization problem statement

• All single-objective, continuous optimization problems can be 
written in this form.

• Although our target applications are engineering design 
problems, many other problems can be stated in this form, and 
thus, the methods covered here can be used to solve those 
problems.

• The values of the objective and constraint functions for a given 
set  of design variables are computed through the analysis, 
which consists of one or more numerical models.

• The analysis must be fully automatic so that multiple 
optimization cycles can be completed without human 
intervention, as shown in Fig. 1.12.

• The optimizer usually requires an initial design x0 and then 
queries the analysis for a sequence of designs until it finds the 
optimum design, x*.
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.4. Optimization problem statements

• When the optimizer queries the analysis for a given x, for most

• methods, the constraints do not have to be feasible.

• The optimizer is responsible for changing x so that the 
constraints are satisfied.

• The objective and constraint functions must depend on the 
design variables; if a function does not depend on any variable 
in the whole domain, it can be ignored and should not appear in 
the problem statement.

Figure 1.12 The analysis computes the 

objective (f) and constraint values (g,h) 

for a given set of design variables (x).
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1. Concepts in optimization problems
1.2. Optimization problem formulation

1.2.4. Optimization problem statements

• Ideally, f , g, and h should be computable for all values of x that

• make physical sense.

• Lower and upper design variable bounds should be set to avoid 
nonphysical designs as much as possible

• Even after taking this precaution, models in the analysis 
sometimes fail to provide a solution. A good optimizer can 
handle such eventualities easily.

• Determining an appropriate set of design variables, objective, 
and constraints is a crucial aspect of the outer loop shown in 
Fig. 1.03, which requires human expertise in engineering design 
and numerical optimization.
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1. Concepts in optimization problems

1.3. Optimization problem classification

• To choose the most appropriate optimization algorithm for 
solving a given optimization problem, we must classify the 
optimization problem and know how its attributes affect the 
efficacy and suitability of the available optimization algorithms.

• This is important because no optimization algorithm is efficient 
or even appropriate for all types of problems.

• We classify optimization problems based on two main aspects:

– the problem formulation

– the characteristics of the objective and constraint functions
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1. Concepts in optimization problems

1.3. Optimization problem classification
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Figure 1.13 Optimization problems classification.
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1. Concepts in optimization problems

1.3. Optimization problem classification

• Here the function is viewed as a “black box” – a computation 
for which we only see inputs (including the design variables) 
and outputs (including objective and constraints), as illustrated 
in Fig. 1.14.

• When dealing with black-box models, there is limited, or no 
understanding of the modelling and numerical solution process 
used to obtain the function values. 

• We can still characterize the functions based purely on their 
outputs.

• The black-box view is common in real-world applications. This 
might be because the source code is not provided, the modelling 
methods are not described, or simply because the user does not 
bother to understand them.
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Figure 1.14 An analysis model is considered a black 

box when only the inputs and outputs are known.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.1. Smoothness

• The degree of function smoothness 
with respect to variations in the design 
variables depends on the continuity of 
the function values and their 
derivatives.

• When the value of the function varies 
continuously, the function is said to be 
C0 continuous.

• If the first derivatives also vary 
continuously, then the function is C1 
continuous, and so on.

• A function is smooth when the 
derivatives of all orders vary 
continuously everywhere in its 
domain.
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Figure 1.15 Discontinuous function 

(top), C0 continuous function 

(middle), and C1 continuous function 

(bottom).
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.2. Linearity

• The functions of interest could be linear or nonlinear.

• When both the objective and constraint functions are linear, the 
optimization problem is known as a linear optimization 
problem.

• These problems are easier to solve than general nonlinear ones, 
and those are dealt with in Chapter 2.

• The first numerical optimization algorithms were developed to 
solve linear optimization problems, and there are many 
applications in operations. An example of a linear optimization 
problem is shown in Fig. 1.16.
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Figure 1.16 Example of linear optimization problem with 

two variables.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.2. Linearity

• An optimization problem consisting of a quadratic objective 
function and linear constraints is a quadratic optimization 
problem.

• Although many problems can be formulated as linear or 
quadratic problems, most engineering design problems are 
nonlinear.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.3. Multimodality and Convexity

• Functions can be either unimodal or multimodal.

• Unimodal functions have a single minimum, whereas 
multimodal functions have multiple minima.

• When we find a minimum without knowledge of whether the 
function is unimodal or not, we can only say that it is a local 
minimum; that is, this point is better than any point within a 
small neighbourhood.

• When we know that a local minimum is the best in the whole 
domain (because we somehow know that the function is 
unimodal), then this is also the global minimum, as illustrated 
in Fig. 1.17.

• Sometimes, the function might be flat around the minimum, in 
which case we have a weak minimum.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.3. Multimodality and Convexity

• It is difficult to prove a function is unimodal.

• However, it is much easier to prove multimodality – all is 
necessary is to find two distinct local minima.

• Often, we need not be too concerned about the possibility of 
multiple local minima.

• From an engineering design point of view, achieving a local 
optimum that is better than the initial design is already a useful 
result.
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Figure 1.17 Types of minima.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.3. Multimodality and Convexity

• Convexity is a concept related to 
multimodality.

• A function is convex if all line 
segments connecting any two points 
in the function lie above the 
function and never intersect it.

• Convex functions are always 
unimodal.

• Also, all multimodal functions are 
nonconvex, but not all unimodal 
functions are convex (see Fig. 1.18).

• Convex optimization seeks to 
minimize convex functions over 
convex sets. 
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Figure 1.18 Multimodal functions 

have multiple minima, whereas 

unimodal functions have only one 

minimum. All multimodal functions 

are nonconvex, but not all unimodal 

functions are convex.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.3. Multimodality and Convexity

• Like linear optimization, convex optimization is another 
subfield of numerical optimization with many applications

• When the objective and constraints are convex functions, we 
can use specialized formulations and algorithms that are much 
more efficient than general nonlinear algorithms to find the 
global optimum.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.4. Deterministic versus Stochastic

• Some functions are inherently 
stochastic.

• A stochastic model will yield 
different function values for 
repeated evaluations with the same 
input (Fig. 1.19).

• For example, the numerical value 
from a roll of dice is a stochastic 
function.

• Stochasticity can also arise from 
deterministic models when the 
inputs are subject to uncertainty.
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Figure 1.19 Deterministic functions 

yield the same output when 

evaluated repeatedly for the same 

input, whereas stochastic functions 

do not.
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1. Concepts in optimization problems
1.3. Optimization problem classification

1.3.4. Deterministic versus Stochastic

• The input variables are then described as probability 
distributions, and their uncertainties need to be propagated 
through the model.

• For example, the bending stress in a beam may follow a 
deterministic model, but the beam’s geometric properties may 
be subject to uncertainty because of manufacturing deviations.
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1. Concepts in optimization problems

1.4. Optimization algorithms

• No single optimization algorithm is effective or even 
appropriate for all possible optimization problems.

• This is why it is important to understand the problem before 
deciding which optimization algorithm to use.

• By “effective” algorithm, we mean that the algorithm is capable 
of solving the problem, and secondly, it does so reliably and 
efficiently.

• Fig. 1.20 lists the attributes for the classification of optimization 
algorithms, which we cover in more detail in the following 
discussion.

• These attributes are often amalgamated, but they are 
independent, and any combination is possible.
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1. Concepts in optimization problems

1.4. Optimization algorithms

• When multiple 
models are involved, 
we also need to 
consider how the 
models are coupled, 
solved, and 
integrated with the 
optimizer.

• These considerations 
lead to different 
MDO architectures, 
which may involve 
multiple levels of 
optimization 
problems.
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Figure 1.20 Classification of optimization algorithms based on 

attributes. These attributes are independent, and any 

combination is possible
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.1. Order of information

• At the minimum, an optimization algorithm requires users to 
provide the models that compute the objective and constraint 
values – zeroth-order information – for any given set of allowed 
design variables.

• We call algorithms that use only these function values gradient-
free algorithms (also known as derivative-free or zeroth-order 
algorithms).

• The advantage of gradient-free algorithms is that the 
optimization is easier to set up because they do not need 
additional computations other than what the models for the 
objective and constraints already provide.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.1. Order of information

• Gradient-based algorithms use gradients of both the objective 
and constraint functions with respect to the design variables - 
first-order information.

• The gradients provide much richer information about the 
function behaviour, which the optimizer can use to converge to 
the optimum more efficiently.

• Figure 1.23 shows how the cost of gradient-based versus 
gradient-free optimization algorithms typically scales when the 
number of design variables increases.

S
o

u
rc

e:
 M

ar
ti

n
s 

et
 N

in
g
, 

2
0

2
1

Figure 1.21 Gradient-based algorithms 

scale much better with the number of 

design variables.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.1. Order of information

• The number of function evaluations required by gradient-free 
methods increases dramatically, whereas the number of 
evaluations required by gradient-based methods does not 
increase as much and is many orders of magnitude lower for 
the larger numbers of design variables.

• In addition, gradient-based methods use more rigorous criteria 
for optimality.

• The gradients are used to establish whether the optimizer 
converges to a point that satisfies mathematical optimality 
conditions, something that is difficult to verify in a rigorous way 
without gradients.

• Gradient-based algorithms also include algorithms that use 
curvature – second-order information. Curvature is even richer 
information that tells us the rate of the change in the gradient, 
which provides an idea of where the function will flatten out.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.1. Order of information

• Because gradient-based methods require accurate gradients 
and smooth enough functions, they require more knowledge 
about the models and optimization algorithm than gradient-
free methods.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.2. Local versus Global search

• The many ways to search the design space can be classified as 
being local or global.

• A local search takes a series of steps starting from a single point 
to form a trail of points that hopefully converges to a local 
optimum.

• In spite of the name, local methods can traverse large portions 
of the design space and can even step between convex regions 
(although this happens by chance).

• A global search tries to span the whole design space in the 
hopes of finding the global optimum.

• As previously mentioned, when discussing multimodality, even 
when using a global method, we cannot prove that any 
optimum found is a global one except for particular cases.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.2. Local versus Global search

• The choice of search type is intrinsically linked to the modality 
of the design space.

• If the design space is unimodal, then a local search will be 
sufficient, and it will converge to the global optimum.

• If the design space is multimodal, a local search will converge to 
an optimum that might be local (or global if we are lucky 
enough).

• A global search will increase the likelihood that we converge to 
a global optimum, but this is by no means guaranteed.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.3. Mathematical versus Heuristic

• There is a big divide regarding the extent to which an algorithm 
is based on provable mathematical principles. 

• Optimization algorithms require an iterative process, which 
determines the sequence of points evaluated when searching for 
an optimum, and optimality criteria, which determine when the 
iterative process ends.

• Heuristics are rules of thumb or commonsense arguments that 
are not based on a strict mathematical rationale.

• Gradient-based algorithms are usually based on mathematical 
principles, both for the iterative process and for the optimality 
criteria.

• Gradient-free algorithms are more evenly split between the 
mathematical and heuristic for both the optimality criteria and 
the iterative procedure.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.3. Mathematical versus Heuristic

• The mathematical gradient-free algorithms are often called 
derivative-free optimization algorithms.

• Heuristic gradient-free algorithms include a wide variety of 
nature-inspired algorithms.

• Heuristic optimality criteria are an issue because, strictly 
speaking, they do not prove a given point is a local (let alone 
global) optimum; they are only expected to find a point that is 
“close enough”.

• This contrasts with mathematical optimality criteria, which are 
unambiguous about (local) optimality and converge to the 
optimum within the limits of the working precision.

• The mathematical criteria usually require the gradients of the 
objective and constraints.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.3. Mathematical versus Heuristic

• This is not to suggest that heuristic methods are not useful. 

• Finding a better solution is often desirable regardless of 
whether or not it is strictly optimal.

• Not converging tightly to optimality criteria does, however, 
make it harder to compare results from different methods.

• Most algorithms mix mathematical arguments and heuristics to 
some degree.

• Mathematical algorithms often include constants whose values 
end up being tuned based on experience.

• Conversely, algorithms primarily based on heuristics 
sometimes include steps with mathematical justification.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.4. Function evaluation

• The optimization problem setup described previously assumes 
that the function evaluations are obtained by solving numerical 
models of the system.

• We call these direct function evaluations.

• However, it is possible to create surrogate models (also known 
as metamodels) of these models and use them in the 
optimization process.

• These surrogates can be interpolation-based or projection-
based models. 
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.5. Stochasticity

• This attribute is independent of the stochasticity of the model 
that we mentioned previously, and it is strictly related to 
whether the optimization algorithm itself contains steps that 
are determined at random or not.

• A deterministic optimization algorithm always evaluates the 
same points and converges to the same result, given the same 
initial conditions.

• In contrast, a stochastic optimization algorithm evaluates a 
different set of points if run multiple times from the same 
initial conditions, even if the models for the objective and 
constraints are deterministic.

• For example, most evolutionary algorithms include steps 
determined by generating random numbers.

• Gradient-based algorithms are usually deterministic, but some 
exceptions exist, such as stochastic gradient descent.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.6. Time dependence

• Here, it assumed that the optimization problem is static.

• This means that the problem is formulated as a single 
optimization and the complete numerical model is solved at 
each optimization iteration.

• In contrast, dynamic optimization problems solve a sequence of 
optimization problems to make decisions at different time 
instances based on information that becomes available as time 
progresses.

• For some problems that involve time dependence, we can 
perform time integration to solve for the entire time history of 
the states and then compute the objective and constraint 
function values for an optimization iteration.

• This means that every optimization iteration requires solving 
for the entire time history.
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1. Concepts in optimization problems
1.4. Optimization algorithms

1.4.6. Time dependence

• An example of this type of problem is a trajectory optimization 
problem where the design variables are the coordinates 
representing the path, and the objective is to minimize the total 
energy expended to get to a given destination.

• Although such a problem involves a time dependence, we still 
classify it as static because we solve a single optimization 
problem.

• As a more specific example, consider a car going around a 
racetrack. We could optimize the time history of the throttle, 
braking, and steering of a car to get a trajectory that minimizes 
the total time in a known racetrack for fixed conditions.

• This is an open-loop optimal control problem because the car 
control is predetermined and does not react to any 
disturbances.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

• It is useful to have a guidance on how to select an appropriate 
approach for solving a given optimization problem.

• This process cannot always be summarised into a simple 
decision tree; however, it is still helpful to have a framework as 
a first guide.

• Many of these decisions will become more apparent as one 
gains experience and, eventually, selecting an appropriate 
methodology will become second nature.

• Figure 1.22 outlines one approach to algorithm selection. 

• The first two characteristics in the decision tree (convex 
problem and discrete variables) are not the most common 
within the broad spectrum of engineering optimization 
problems, but we list them first because they are the more 
restrictive in terms of usable optimization algorithms.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach
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Figure 1.22 Decision tree for selecting optimization algorithms.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

Convexity.

• Although it is often not immediately apparent if the problem is 
convex, with some experience, we can usually discern whether 
attempting to reformulate in a convex manner is likely to be 
possible.

• In most instances, convexity occurs for problems with simple 
objectives and constraints (e.g., linear or quadratic), such as in 
control applications where the optimization is performed 
repeatedly.

• A convex problem can be solved with general gradient-based or 
gradient-free algorithms, but it would be inefficient not to take 
advantage of the convex formulation structure if we can do so.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

Discrete variables.

• Problems with discrete design variables are generally much 
harder to solve, so we might consider alternatives that avoid 
using discrete variables when possible.

• For example, a wind turbine’s position in a field could be posed 
as a discrete variable within a discrete set of options. 

• Alternatively, we could represent the wind turbine’s position as 
a continuous variable with two continuous coordinate variables. 

• That level of flexibility may or may not be desirable but will 
generally lead to better solutions.

• Many problems are fundamentally discrete, and there is a wide 
variety of available methods, some of which can be very 
effective.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

Continuous and differentiable.

• If the problem is high dimensional (more than a few tens of 
variables as a rule of thumb), gradient-free algorithms are 
generally intractable and gradient-based algorithms are 
preferable.

• We would either need to make the model smooth enough to use 
a gradient-based algorithm or reduce the problem 
dimensionality to use a gradient-free algorithm.

• Another alternative if the problem is not readily differentiable 
is to consider surrogate-based optimization (the box labelled 
“Noisy or expensive” in  Figure 1.22).

• If using the surrogate-based optimization route, we could still 
use a gradient-based approach to optimize the surrogate model 
because most such models are differentiable.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

• Finally, for problems with a relatively small number of design 
variables, gradient-free methods can be a good fit.

• Gradient-free methods have the largest variety of algorithms, 
and a combination of experience and testing is needed to 
determine an appropriate algorithm for the problem at hand.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

Algorithms.

• Linear optimization

• Quadratic optimization

• BnB (Branch and Bound) – is a method for solving 
optimization problems by breaking them down into smaller 
sub-problems and using a bounding function to eliminate sub-
problems that cannot contain the optimal solution. It is an 
algorithm design paradigm for discrete and combinatorial 
optimization problems, as well as mathematical optimization.

• Dynamic programming

• SA (Simulated Annealing)

• GA (Genetic Algorithm)
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

• BFGS – second-order optimization algorithm. It is an acronym, 
named for the four co-discovers of the algorithm: Broyden, 
Fletcher, Goldfarb, and Shanno. It is a local search algorithm, 
intended for convex optimization problems with a single 
optima.

• SQP (Sequential Quadratic Programming)

• IP (Integer Programming) – applicable to a special class of 
combinatorial optimization problems, which tend to be difficult 
to solve. It is a LP (Linear Programming) with integer variables.

• Multistart

• DIRECT - DIRECT global optimization algorithm initially 
provided an approach to minimizing a black-box function 
subject to lower and upper bounds on the variables. Many 
revisions allowed inclusion of constraints among other 
capabilities.
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1. Concepts in optimization problems

1.5. Selecting an optimization approach

• GPS (Generalized Pattern Search)

• PSO (Particle Swarm Optimization) – is a powerful meta-
heuristic optimization algorithm and inspired by swarm 
behaviour observed in nature such as fish and bird schooling.

• Nelder-Mead – is a direct search method of optimization. It is 
used for non-differentiable objective functions and is generally 
referred to as a pattern search algorithm. The method works by 
evaluating a function at the vertices of a simplex, then 
iteratively shrinking the simplex as better points are found until 
some desired bound is obtained. Nelder-Mead repeatedly 
transforms the triangle of test points, replacing the worst point 
with a better one, and then contracts around a local minimum 
when it finds one.

• …
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2. Examples of optimization 
problems

• Some practical optimization problems are presented next to 
illustrate the benefits of this approach to design practices.
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2. Examples of optimization problems

2.1. Two-bar truss

• Consider the design of a simple tubular symmetric truss shown 
in Fig. 1.23 below (problem originally from Fox).

• A design of the truss is specified by a unique set of values for 
the analysis variables: height (H), diameter, (d), thickness (t), 
separation distance (B), modulus of elasticity (E), and material 
density ().
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Figure 1.23 Layout for the Two-bar truss model.
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2. Examples of optimization problems

2.1. Two-bar truss

• Suppose we are interested in 
designing a truss that has a 
minimum weight, will not 
yield, will not buckle, and does 
not deflect "excessively”, and 
so we decide our model should 
calculate weight, stress, 
buckling stress and deflection 
– these are the analysis 
functions.

• In this case we can develop a 
model of the truss using 
explicit mathematical 
equations. These equations 
are:
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2. Examples of optimization problems

2.1. Two-bar truss

• The analysis variables and analysis functions for the truss are 
also summarized in the table below.

• We note that the analysis variables represent all quantities on 
the right-hand side of the equations given above.

• When all of these are given specific values, we can evaluate the 
model, which refers to calculating the functions.
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2. Examples of optimization problems

2.1. Two-bar truss

• An example design for the truss is given below (left).

• We can obtain a new design for the truss by changing one or all 
analysis variable values.

• For example, if we change thickness from 0.15 in to 0.10 in., we 
find that weight has decreased, but stress and deflection have 
increased, as given below (right).
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2. Examples of optimization problems

2.1. Two-bar truss

• The optimization statement is

• Note that to define the buckling constraint, we have combined 
two analysis functions together.

• Thus we have mapped two analysis functions to become one 
design function.

• We can specify several optimization problems using the same 
analysis model. 

minimize
by varying

subjected to

𝑊𝑒𝑖𝑔ℎ𝑡(𝑥)

𝑥 = [𝑑, 𝐻]
𝑆𝑡𝑟𝑒𝑠𝑠(𝑥)  ≤ 100

(𝑆𝑡𝑟𝑒𝑠𝑠 − 𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑠𝑠) (𝑥)  ≤ 0

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑥)  ≤ 0.25

𝑖 = 1,2
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2. Examples of optimization problems

2.1. Two-bar truss

• For example, we can define a different optimization problem 
for the two-bar truss to be

• The specifying of the optimization problem, i.e. the selection of 
the design variables and functions, is referred to as the 
mapping between the analysis space and the design space.

• For the problem defined in the previous slide, the mapping 
looks like

minimize
by varying

subjected to

𝑆𝑡𝑟𝑒𝑠𝑠(𝑥)

𝑥 = [𝑡, 𝑑]
𝑊𝑒𝑖𝑔ℎ𝑡(𝑥)  ≤ 25

𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑥)  ≤ 0.25

𝑖 = 1,2
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2. Examples of optimization problems

2.1. Two-bar truss
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2. Examples of optimization problems

2.1. Two-bar truss

• Contour plot with design space:
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2. Examples of optimization problems

2.1. Two-bar truss

• How an optimization algorithm works:
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2. Examples of optimization problems

2.2. MDO for Aircraft Design at 
Bombardier Aerospace

• https://www.fzt.haw-
hamburg.de/pers/Scholz/ewade/2015/SCAD2015_Piperni_M
DOforAircraftDesignAtBombardier.pdf

https://www.fzt.haw-hamburg.de/pers/Scholz/ewade/2015/SCAD2015_Piperni_MDOforAircraftDesignAtBombardier.pdf
https://www.fzt.haw-hamburg.de/pers/Scholz/ewade/2015/SCAD2015_Piperni_MDOforAircraftDesignAtBombardier.pdf
https://www.fzt.haw-hamburg.de/pers/Scholz/ewade/2015/SCAD2015_Piperni_MDOforAircraftDesignAtBombardier.pdf
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