

Otimização em Engenharia/Optimization in Engineering – 15235

2024/2025

Mini-project 3 Minimization of the mass of a beam

1. OBJETIVE

To learn how to implement a computer code using gradient-free optimization algorithms to solve a constrained minimization problem.

2. PROBLEM

A built-in beam with a length (L) and a rectangular cross-section of width (w) and height (h) is loaded with a vertical tip force (P). The properties of the material used in its construction are a Young's modulus (E) and a density (ρ) .

Write a computer code that determines the cross-section size which minimizes the mass of the beam when it is subjected to the tip force, complying with a maximum direct stress (σ_{max}), a maximum shear stress (τ_{max}), a maximum tip deflection (δ_{max}), a minimum width (w_{min}), a minimum height (h_{min}), a maximum width (w_{max}), and a maximum height (h_{max}). The equations for this problem are given below.

$$m = \rho L w h$$
 ; $\sigma_{max} = \frac{6PL}{wh^2}$; $\tau_{max} = \frac{3P}{2wh}$; $\delta_{max} = \frac{4PL^3}{Ewh^3}$

Plot the mass as a function of the cross-section dimensions, b and h, and the obtained solution.

The following tasks are required to develop the proposed work:

- a) Select an optimization algorithm from Table 2, implement it in a computer code using a programming language of your choice and validate it using the 2-variable Rosenbrock function: $f(x,y) = (a-x)^2 + b(y-x^2)^2$ with a=1 and b=100 and $x \in [-2,2]$ and $y \in [-1,3]$.
- b) Define and implement a computer code to calculate the optimization function mass (m) and the constraints direct tress (σ) , shear stress (τ) and tip deflection (δ) , given the design variables width (w) and height (h).
- c) Define and implement the optimization problem of the beam.

- d) Minimize the mass of the beam using the numerical tools previously developed.
- e) Write a report containing the following: problem description, solution methodology, code implementation, results and discussion, conclusions. The developed code should be placed in an appendix.

3. REPORT

Each team of 3 to 4 students (team from Table 3, using different data from Tables 1 and 2) must present the results of their work in a written report, **with a maximum of 20 pages**. It should explain in adequate detail all the steps associated with solving the problem. A critical analysis of the results should also be presented.

The report should follow the following structure:

- a) Introduction: presentation of the problem and objectives. [10 points]
- b) Optimization algorithm: brief description, implementation, and validation. [60 points]
- c) Beam analysis: objective and constraint functions, implementation. [40 points]
- d) Beam optimization: minimization of the beam's mass. [40 points]
- e) Analysis and Discussion: evaluation of the results and critical analysis. [40 points]
- f) Conclusions: considering the objectives, overall evaluation of the work and the obtained results. [10 points]

The deadline for submitting the report is <u>December 20th, 2024</u>. The report in <u>pdf format must be sent via email to pgamboa@ubi.pt</u>.

4. DATA

Each team of 3 to 4 students will select a different case from Table 1.

Table 1. Beam loading and characteristics.

Case	1	2	3	4	5	6	7	8	9	10	11	12
L, m	0.9	0.9	0.9	1	1	1	1.1	1.1	1.1	1.2	1.2	1.2
E, GPa	70	140	210	70	140	210	70	140	210	70	140	210
ho, kg.m ⁻³	2700	1500	7900	2700	1500	7900	2700	1500	7900	2700	1500	7900
P, kN	3	3	3	3	3	3	3	3	3	3	3	3
σ_{max} , MPa	100	300	200	100	300	200	100	300	200	100	300	200
τ_{max} , MPa	10	5	20	10	5	20	10	5	20	10	5	20
δ_{max} , mm	10	10	10	10	10	10	10	10	10	10	10	10
W_{min} , mm	10	10	10	10	10	10	10	10	10	10	10	10
W_{max} , mm	100	100	100	100	100	100	100	100	100	100	100	100
h_{min} , mm	20	20	20	20	20	20	20	20	20	20	20	20
h_{max} , mm	150	200	250	150	200	250	150	200	250	150	200	250

Pedro V. Gamboa (2024)

Table 2 – Optimization algorithm.

#	Algorithm			
1	Nelder–Mead			
2	generalized pattern search (GPS)			
3	DIRECT			
4	genetic algorithm (GA) bit-encoded			
5	genetic algorithm (GA) real-encoded			
6	particle swarm optimization (PSO)			

Table 3 – Teams.

Team	Case	Alg.	Student 1	Student 2	Student 3	Student 4
1 2	4	Pedro Leite	Anton Mamus	Pedro Moreira	Francisco Ribeiro	
		M14197	M14212	M14298	E11572	
2 6	6	Miguel Ruivo	Alexandre Teixeira	Isabel Gomes	Miguel Albino	
		M14234	M14291	M14292	M14293	
3 5	5	Afonso Gamboa	Daniel Câmara	Sebastião Ventura	Breno Cabral	
		M14208	M14445	M14473		
4 4	3	André Sousa	Maria Fernandes	Octávio Lopes	Cristina Martins	
		E11575	M14297	M14517	M15038	
5 3	2	Diogo Pinho	Beatriz Gonçalves	Pedro Rafeiro	Riaan Rasga	
	2	M14214	M14442	M14527	M14953	
6 1	1	1	João Ramalhosa	Mariana Peixoto	Gonçalo Dias	Júlia Russo
	1	M14135	M14179	M14443	A55210	

Pedro V. Gamboa (2024) 3