Exemplo T.01:

É necessário dimensionar à flexão uma viga que resista ao carregamento aplicado com a massa mínima possível.

A geometria e a definição dos parâmetros da viga estão mostrados na figura T.01. A viga tem uma largura c constante, uma altura h constante e um comprimento l.

A estrutura da viga é constituída por uma secção aberta de paredes finas. As paredes têm uma espessura t. A área da secção do tensor de reforço é A. A raiz da asa encontra-se encastrada enquanto a sua ponta está livre. São usados dois materiais diferentes no fabrico da viga, o material C das paredes e o material L no tensor, sendo ambos os materiais isotrópicos e estando as suas propriedades indicadas na tabela T.01.

O carregamento a aplicar na asa consiste em duas forças aplicadas no centro de corte, uma vertical S_v e outra horizontal S_x .

Pretende-se o seguinte:

- a) Usando o método da idealização estrutural, descrever o modelo matemático para a resolução do problema.
- b) Implementar em folha de cálculo um modelo para calcular as tensões diretas aplicadas na viga (pontos 1, 2 e 3 na raiz da viga).
- c) Implementar em folha de cálculo um modelo para minimizar a massa da viga sabendo que c = 25 mm, h = 50 mm, l = 500 mm, $S_x = 180$ N, e $S_y = 600$ N, usando como variáveis t e A, e sabendo que $t \ge 0.4$ mm, $A \ge 2$ mm² e a margem de segurança tem que ser maior ou igual a 0.1 (MS > 0.1).

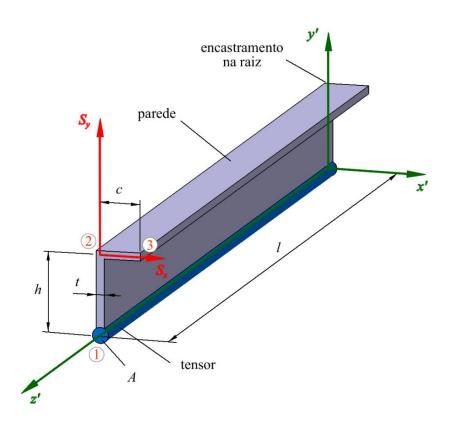


Figura T.01 Geometria da viga e parâmetros.

Tabela T.01 Propriedades dos materiais.

Material L	Módulo elástico longitudinal	EL	GPa	150
	Tensão de cendência à tração	$\sigma_{t,L}$	MPa	1500
	Tensão de cedência à compressão	$\sigma_{c,L}$	MPa	1200
	Massa volúmica	$ ho_{ t L}$	kg/m³	1600
Material C	Módulo elástico longitudinal	E c	GPa	70
	Tensão de cendência à tração	$\sigma_{t,c}$	MPa	300
	Tensão de cedência à compressão	$\sigma_{c,c}$	MPa	240
	Massa volúmica	$ ho_{c}$	kg/m³	2700

a) <u>Usando o método da idealização estrutural, descrever o modelo matemático para a resolução do problema</u>

Existem vários passos para resolver este problema. Vamos descrever cada um pela ordem necessária para definir a análise.

i. Cálculo dos momentos fletores na raiz da viga

Os momentos fletores numa posição z arbitrária ao longo do comprimento da viga são

$$M_x(z) = -S_y(l-z)$$

 $M_y(z) = -S_x(l-z)$ (T.01)

onde M_x é o momento fletor em torno do eixo x e M_y é o momento fletor em torno do eixo y. No encastramento z = 0, logo os momentos fletores na raiz da viga ficam

$$M_{x} = -S_{y}l$$

$$M_{y} = -S_{x}l$$
(T.02)

ii. Assunção de valores iniciais para a espessura das paredes e a área do tensor

Assumem-se valores arbitrários para a espessura *t* das paredes a para a área da secção transversal *A* do tensor na seguinte forma

$$t = t_{inicial}$$

$$A = A_{inicial}$$
(T.03)

iii. Assunção de valores iniciais para as tensões diretas

Como o cálculo das áreas dos "booms" depende das tensões diretas nos próprios "booms" é necessário assumir uma solução inicial para as mesmas

$$\sigma_{z,r} = \sigma_{z,r,inicial} \quad r = 1,3 \tag{T.04}$$

iiiv. Cálculo da área dos "booms"

A área dos "booms" não pode ser calculada diretamente quando a secção possui materiais com módulos elásticos longitudinais diferentes. Neste caso tem que se calcular a rigidez axial do "boom" *EB* que é dada por

$$EB_r = E_r A_r + \sum_{i=1}^n E_i \frac{t_{D,i} b_i}{6} \left(2 + \frac{\sigma_{z,i}}{\sigma_{z,r}} \right) \quad r = 1,3$$
 (T.05)

onde E_r é o módulo elástico longitudinal do tensor do "boom" r, A_r é a área transversal do tensor do "boom" r, E_i é o módulo elástico longitudinal da parede i, $t_{D,i}$ é a espessura da parede i, b_i é o comprimento da parede i, $\sigma_{z,i}$ é a tensão direta na extremidade oposta a r da parede i e $\sigma_{z,r}$ é a tensão direta no "boom" r. Assim, para cada um dos "booms" tem-se

$$EB_{1} = E_{L}A + E_{C}\frac{th}{6}\left(2 + \frac{\sigma_{z,2}}{\sigma_{z,1}}\right)$$

$$EB_{2} = E_{C}\frac{th}{6}\left(2 + \frac{\sigma_{z,1}}{\sigma_{z,2}}\right) + E_{C}\frac{tc}{6}\left(2 + \frac{\sigma_{z,3}}{\sigma_{z,2}}\right)$$

$$EB_{3} = E_{C}\frac{tc}{6}\left(2 + \frac{\sigma_{z,2}}{\sigma_{z,3}}\right)$$

$$(T.06)$$

v. Cálculo do centróide da secção

Considerando a origem dos eixos x'y' no "boom" 1, a posição do centróide, para uma secção totalmente idealizada e com materiais diferentes, é

$$\bar{x} = \frac{\sum_{r=1}^{n} EB_{r}x'_{r}}{\sum_{r=1}^{n} EB_{r}}$$

$$\bar{y} = \frac{\sum_{r=1}^{n} EB_{r}y'_{r}}{\sum_{r=1}^{n} EB_{r}}$$
(T.07)

vi. Cálculo da posição dos "booms" nos eixos centroidais xy

A posição dos "booms" nos eixos centroidais xy é dada por

$$x_r = x'_r - \bar{x}$$
 $r = 1,3$
 $y_r = y'_r - \bar{y}$ $r = 1,3$ (T.08)

vii. Cálculo dos segundos e momentos de área e do produto de área

Os segundos momentos de área e o produto momento de área dos "booms" também não podem ser calculados diretamente quando a secção possui materiais com módulos elásticos longitudinais diferentes. Neste caso tem que se calcular os valores da rigidez à flexão da secção *EI* que são dados por

$$EI_{xx} = \sum_{r=1}^{n} EB_r y_r^2$$

$$EI_{yy} = \sum_{r=1}^{n} EB_r x_r^2$$

$$EI_{xy} = \sum_{r=1}^{n} EB_r x_x y_r$$

$$(T.09)$$

viii. Cálculo das tensões diretas nos "booms"

A tensões diretas nos "booms" têm que ter em conta os diferentes módulos elásticos do material. Assim, a equação das tensões diretas fica

$$\sigma_{z,r} = E_r \left[\left(\frac{M_y E I_{xx} - M_x E I_{xy}}{E I_{xx} E I_{yy} - E I_{xy}^2} \right) x_r + \left(\frac{M_x E I_{yy} - M_y E I_{xy}}{E I_{xx} E I_{yy} - E I_{xy}^2} \right) y_r \right] \quad r = 1,3$$
 (T.10)

ix. Convergência das tensões diretas

Depois de se obterem as tensões diretas pela equação (T.10) é preciso comparar estes resultados com aqueles assumidos pela equação (T.04). Ambas as equações têm que dar os mesmos resultados, pelo que é preciso assumir novos valores de $\sigma_{z,r,inital}$ até eles serem iguais. Uma forma de o fazer é usar a seguinte expressão

$$\sigma_{z,r,inicial}^{novo} = \sigma_{z,r,inicial} + \lambda \left(\sigma_{z,r} - \sigma_{z,r,inicial}\right) \quad r = 1,3 \tag{T.11}$$

onde $(\sigma_{z,r} - \sigma_{z,r,inicial})$ é a diferença entre o valor da equação (T.10) e o da equação (T.04), $\sigma_{z,r,inicial}^{novo}$ é o valor a substituir na equação (T.04) na iteração seguinte e λ é um coeficiente de amortecimento que toma um valor adequado menor do que um.

Este procedimento deve ser repetido até se cumprir o critério de convergênia

$$\frac{\sigma_{z,r}}{\sigma_{z,r,inicial}} - 1 < e \quad r = 1,3 \tag{T.12}$$

onde e é o critério de convergência que deve ser um valor pequeno.

x. Cálculo das margens de segurança

Para se saber se a estrutrua resiste ao carregamento aplicado é necessário calcular as margens de segurança. Como só estamos a considerar o efeito dos momentos fletores na estrutura idealizada, interessa-nos saber as margens de segurança das tensões diretas axiais em cada um dos "booms". Assim

$$MS_{r} = \frac{\sigma_{c,material}}{|\sigma_{z,r}|} - 1 \quad \text{se } \sigma_{z,r} < 0$$

$$MS_{r} = \infty \quad \text{se } \sigma_{z,r} = 0$$

$$MS_{r} = \frac{\sigma_{t,material}}{\sigma_{z,r}} - 1 \quad \text{se } \sigma_{z,r} > 0$$

$$T = 1,3$$

$$T = 1,3$$

$$T = 1,3$$

xi. Cálculo da massa da viga

A massa da viga é dada pelo volume de cada material multiplicado pela sua massa volúmica na seguinte forma

$$m = \rho_L A l + \rho_C (h + c) t l \tag{T.14}$$

xii. Minimização da massa da viga

O objetivo deste problema é obter a viga mais leve possível e que resista ao mesmo tempo ao carregamento aplicado sem ultrapassar as tensões de cedência dos materiais. Para isso é necessário formular um problema de otimização que contém uma função objetivo f, um conjunto de restrições de desigualdade g e um conjunto de variáveis v.

Assim, o vetor das variáveis de otimização é

$$v = \{t, A\}$$

$$t_{\min} \le t \le t_{\max}$$

$$A_{\min} \le A \le A_{\max}$$
(T.15)

onde os limites de t e A são escolhidos para o caso particular em estudo. Neste caso pode usar-se apenas $t \ge t_{\min}$ e $A \ge 0$. A função objetivo é a equação (T.14)

$$f = m(t, A)$$

As funções de constrangimento que vamos usar são as seguintes

$$g = \begin{cases} MS_1(t, A) \ge MS_{\min} \\ MS_2(t, A) \ge MS_{\min} \\ MS_3(t, A) \ge MS_{\min} \end{cases}$$
 (T.16)

Então o problema de otimização é

$$\min f(\mathbf{v})$$

$$\operatorname{com} \mathbf{v} = \{t, A\}$$

$$\operatorname{sujeito} a \ g(\mathbf{v}) = \begin{cases} MS_1(\mathbf{v}) \ge MS_{\min} \\ MS_2(\mathbf{v}) \ge MS_{\min} \\ MS_3(\mathbf{v}) \ge MS_{\min} \end{cases}$$
(T.17)

em que o que se pretende é descobrir o vetor \mathbf{v} (o par t, A) que minimiza $f(\mathbf{v})$ cumprindo as inequações $g(\mathbf{v})$. Os valores de margem de segurança mínima MS_{min} e espessura mínima t_{min} têm que ser pelo menos igual a zero. Na prática, pretende-se alterar de forma automática a equação (T.03) para minimizar a equação (T.14), cumprindo a equação (T.15) e a equação (T.16).

Para resolver este problema de otimização podem usar-se variados métodos de otimização.

b) <u>Implementar em folha de cálculo um modelo para calcular as tensões diretas aplicadas na viga (pontos 1, 2 e 3 na raiz da viga).</u>

Esta questão vai ser apresentada em aula. O modelo a usar está apresentado na *alínea a)* fazendo a iteração desde o ponto *iii* ao *ix*.

A iteração pode ser feita através do cálculo iterativo do Excel ativando o cálculo iterativo: *File>Options>Formulas>Enable iterative calculation*.

c) Implementar em folha de cálculo um modelo para minimizar a massa da viga sabendo que b = 25 mm, h = 35 mm, l = 250 mm, $S_v = 100$ N, e $S_x = 50$ N, usando como varíaveis t e A.

Esta questão vai ser apresentada em aula. O modelo implementado na *alínea b*) é alargado para conter a otimização desde o ponto *ii* ao *xii*.

O Excel possui uma ferramenta de otimização que usa o método de de otimização de gradientes não linear com restrições GRG: *Data>Solver*.