F13
o)
<
=
W
(a4
/|
2
Z
-

BEIRA INTERIOR

Elementos Finitos
Isoparametricos

Mecanica Estrutural
(10391/10411)

Mestrado Integrado em Engenharia Aeronautica

2022
Pedro V. Gamboa

Departamento de Ciéncias Aeroespaciais
Faculdade de Engenharia



)

Elementos Finitos Isoparamétricos

1. Definition

The same function that is used to define the element geometry
is used to define the displacements within the element.

— 2-node truss element

linear geometry linear displacements

o
e
e

— 3-node beam element

guadratic geometry guadratic displacements

—o—° ]
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Elementos Finitos Isoparamétricos

The same local coordinate system is assigned to each element.
This coordinate system is called the natural coordinate system.

The advantages of choosing this coordinate system are:
— It is easier to define the shape functions

— The integration over the surface of the element is easier (numerical
integration can be used which is much simpler in the natural coordinate
systems and can be scaled to the actual area)

The steps in deriving the elemental stiffness matrices are the same:
— Step 1: Select element type
— Step 2: Select displacement function
— Step 3: Define strain/displacement, stress/strain relations
— Step 4: Derive element stiffness matrix and equations



[l ” 2. 1D Truss Elements

Step 1 — Select element type

For 1D linear truss elements the natural coordinate system for
an element is:

2 _ s=0 —

4% s=-1 ’_> s=1

5 o——

£ 1 2

é The natural coordinates are related to the global coordinates

F through

5

5 X =a, +a,s (2.1)

which can be solved for the a’s to give

X= (1_78}% + (ljfsz (2.2)



ll” 2. 1D Truss Elements

or in matrix form as

x =[N, Nz]{xl} (2.3)

X2
;% where
=
5 1-s 1+s
s Ny=—"— 7 Ny=—+ 2.4
g b2 P2 (2.4)
2 Now, following the remainder of the steps becomes much
E simpler.
=
:
=

Step 2 — Select the displacement function

u=[N, NZ]{ul} (2.5)

U,
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2. 1D Truss Elements

Step 3 — Define strain/displacement, stress/strain relations
Recall the following definition
du

gx(x)_&

Then, by applying the chain rule of differentiation, we have

du /dx
X)=—/— 2.7

. [_Tl ﬂ{i} _Bu (2.8)

(2.6)

Thus
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2. 1D Truss Elements

The stress/strain relation is expressed as

o, =D, (2.9)

where D=E.
Then,

¢, = EBU (2.10)

Step 4 — Derive the element stiffness matrix and equations
The stiffness matrix is

e T
K® = [ AEB"Bdx (2.11)
L

which has an integral over x which needs to be converted to an
integral over s.
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2. 1D Truss Elements

This is done through the transformation

L 1
[ £(x)dx = [ £(s)3]ds (2.12)
0 -1
where |J| is the Jacobian and for the simple truss element it is
dx L
J=—=— 2.13
p=2-L .13
Finally, substituting B, |J| and the transformation in (2.12) into
(2.11) gives 1)
l -
-1 1|L
Ke=AE[{ LY== = |=ds
_jl 1 { : J ; (2.14)
\§ L J
or
E

K® = Lo~
e 019
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Step 1 — Select element type

For constant strain triangular (CST) elements a natural
coordinate system as shown in the figure is selected.

5= 1

Elementos Finitos Isoparamétricos
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3. CST Elements

The geometry is defined in terms of the natural coordinate

system as
X=8 X +S,X; + 83X,

Y=51Yi S, +53Yn
which in matrix form becomes

1) [1 1 1]
IXP=[ X Xi X, RS,p

i j m

Y LYi Y5 Ym |(Ss)

and which can be solved as
- B 711

S, 1 1 1 1) o, S
| 1

1S =X X X, <X>_ﬁ\ a; ,Bj

Ss) LY Y Yal WY o, P

Vi

Vm

(3.1)

(3.2)

(3.3)
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In this case, these s’s are the shape functions

m m

i Wi
i ] ]
fX\

Yi

X N, 0 N; 0 N, 0 |fx
y[ |0 N, 0 N, O Nm<yj (3:4)

V
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3. CST Elements

The sum of the shape functions anywhere on the element is 1.

N;+N; +N_, =1 (3.5)

]

Note that in this case, the N's are simply s, s, and s..

Step 2 — Select the displacement function

The element displacement can be written as a function of the
nodal DOF in the same form as used for the geometry.
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Thus
KUi A
Vi
§ u(x N 0 N. O N, O [|u;
: (x )] _ | il g
2 V(X Y) O N, 0O N; 0 N, V;
; u_
E \VmJ
é or
=
= ¥ = Nu (3.7)
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3. CST Elements

Step 3 — Define strain/displacement, stress/strain relations
In 2D the strain/displacement relations are

T YTy Ty ax (3.6)
or in matrix form
_a —_ (ui\
-, |= 0 V.
P OX
J |y o™ 0 N0 N, 0T,
YT o N o N, 0 N[y [ G
D) |8 0
v v u,
_8y aX_ \Vm,
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and
— —_ u )
| ON . '
o N o —LX 0 N, 0 ||v
2 & OX OX OX !
£ ’ | ON . u.
E 1&,r=| 0 MNi g T g NalJH1 (3.8)
: oy oy oy ||V
§ \yxy) aNl aNl 6N J aN J aN m aN m Um
2 oy ox oy ox oy ox ||y
: ¢ =Bu (3.9)
. In 2D the stress/strain relations are
¢ = De=DBu (3.10)

where D depends on whether plane stress or plain strain exist.



)

Elementos Finitos Isoparamétricos

3. CST Elements

Since the shape functions are functions of the natural
coordinates s; and not x and y, the chain rule is applied

oN;  ON, 0s, +6Ni oS, +8Ni 0S4

ox  8s, OX 0s, OX 05, OX

A1
oN, _oN; &s, @N, as, N, os, (3-11)
oy 0s 0y 0s, 0y 08, 0y
Let us consider the following
(ON, ON, ON, |
0s, 08 0S| [1 0 0
ON, ON, ON
By=| =t —2 “2(=|0 1 0
° | as, os, 0, (3.12)
ON, oN, oN,| 0 0 1)
| 0S;  0S; 0S|
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Then, for the derivatives of the shape functions with respect to
the global coordinate system
6Ni_asi_ﬁi . aNj_aSj_ﬂj . al\Im_asm_lgm
ox ox 2A ox ox 2A T ox  ox  2A
(3.13)
al\Ii_asi_7/i . aNj_aSj_yJ' . al\Im_as'm_j/m
oy oy 2A oy oy 2A oy oy 2A
and the strains are written as

Elementos Finitos Isoparamétricos

(ui\
S _ - v
gx 1 ﬁi O ﬂj O ﬂm O U
16 [=opl 0 7 0 7y 0y T (314)
\yxy) _7/i ﬂi 7/j ﬁj 7/m ﬂm_ uj

\Vm/
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3. CST Elements

Step 4 — Derive element stiffness matrix and equations

Lastly, using the principle of minimum potential
energy/principal of virtual work (PMPE) to obtain the stiffness
matrix in the form

| J [BTDBuUdV -P— | J [N, dV - js [N'T, qds =0 (3.15)

Since all the terms in B are constant and assuming the
thickness t and material properties are constant over the
element one has

Ku=f (3.16)

where
K =tAB'DB (3.17)
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Step 1 — Select element type

For linear strain triangular (LST) elements a natural coordinate
system as shown in the figure is selected similar to the CST
element.

Elementos Finitos Isoparamétricos
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4. LST Elements

The geometry is defined in terms of the natural coordinate
system as

X =N;X + N,X, + NoXg + N, X, + NeXe + Ny X,
Y =Ny, + Ny, + Ngy; + Ny, + Ngys + Nge

These equations can be solved for the shape functions in terms
of the natural coordinates.

Let N, be a quadratic function of s, and s, of the form

(4.1)

2 2
Ni =ay; +&;S; T AyS, + 855, +8,S, +855,5, (4-2)

which means that there are 6 unknown coefficients to be
determined for each shape function.

Note that it is possible to express s, as a function of s, and s, as
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Using the information that at node i we need N,=1 and all other

N;,;=0, then there are 6 equations for each shape function and

we can solve for the coefficients.
Then

N, =s,(2s, 1)
N, =s,(2s, 1)
N, =s,(2s, -1)

N, =4s,s, (43)

Elementos Finitos Isoparamétricos

N, =4s,s,
N, =4ss,
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Noting that s, =1-5, —S,, then (4.3) becomes
N, =s,(2s, —1)
N, =s,(2s, -1)
N; = (1_ Sy;— S )[2(1_ Sy~ 32)_1]
N, =4s,(1-s,-5s,)
N, =4(1-s,-5,)s,
N, =4s;s,

(4.4)

Elementos Finitos Isoparamétricos

In this case the shape/interpolation functions look like
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The sum of the shape functions anywhere on the element is 1.
N, +N,+N;+N,+N.+N, =1 (4.5)

Incidentally, the shape functions in the global coordinate
system for a nice element with sides aligned with the x and y
axes would look something like this

N, =1-3x/b—3y/h+2x%/b® + 4xy/(bh)+2y? /h?
N, = —x/b+2x*/b?

N, =—y/h+2y*/h’

N, =4xy/(bh)

N, =4y/h—4xy/(bh)+4y?/h?

N, = 4x/b—4xy/(bh)—4x*/b?

Elementos Finitos Isoparamétricos

This is why the isoparametric formulation is used.
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Step 2 — Select the displacement function

The element displacement can be written as a function of the
nodal DOF in the same form as used to describe the geometry.

u(x,y)] [N, 0 N, 0 N; 0O N, 0O N, 0 Ng 0
vix,y)) |0 N, 0 N, 0 N, 0 N, 0 N, O N,
X{ul Vi U, VvV, Ug Vg U, VvV, U; Vg U Ve}T

(4.6)

Elementos Finitos Isoparamétricos

or
¥ =Nu (4.7)
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4. LST Elements

Step 3 — Define strain/displacement, stress/strain relations
In 2D the strain/displacement relations are

ou ov ou ov

x:& ) gy:@ J 7/xy:5+&

or in matrix form

& (4.8)

u
ol 49

R[> o
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4. LST Elements

In 2D the stress/strain relations are

¢ = Dg=DBuU

145 -1
|0

% N, ON, ON, ON, oON, oN,
E g _| 0 O 08 05 0s O,
: °=|aN, ON, ON, N, ON. oN,
£ | 0s, o0s, 0Os, 0s, 35, 05,
. 0 4s, +4s, -3 —4s,

4s,—1 4s,+4s,-3 4-4s -8s,

4 —8s, —4s,
—4s,

(4.10)

where D depends on whether plane stress or plain strain exist.
Let us consider the following matrix

(4.11)

4s,
4s,
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4. LST Elements

Let the Jacobian matrix be (a 2x2 matrix)

ON, ON, oON, ON, ON; ONg |
os, 0s, 0s 0S5 05 05
ON;, ON, ON, ON, ON. ON,
os, o0s, o0S, O0S, O0S, 05,

Y1
Y>
g
Y4
Ys
Ye

(4.12)

Then, the terms in the B matrix are extracted from the product

J7B, =

ON; ON, ON, ON, ON. ONg

OX OX OX OX OX OX
ON;, ON, ON, ON, ON. ONg
oy oy oy oy oy oy

(4.13)
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4. LST Elements

Step 4 — Derive element stiffness matrix and equations

Lastly, using the principle of minimum potential
energy/principal of virtual work (PMPE) to obtain the stiffness
matrix in the form

ijBTDBudv -P —UJNTXbodde —ijNTTtractdS =0 (414)

The Gaussian Quadrature is used to perform the integration
over the element.

Note that B and N in the above are functions of the natural
coordinates s, and s,.
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5. Numerical integration using
Gaussian Quadrature

As seen before, the derivation of the stiffness matrix requires an
integration over the element from the strain energy definition
and so does the force vector.

Often this is difficult to do explicitly. Some numerical
integration techniques can help here.

In the element formulation, the form of the displacement
function has been chosen and hence the form of the strains and
stresses which appear in the internal strain energy.

The principle behind the Gaussian Quadrature is that if the
functional form of the function to be integrated is known, then
there is a certain number of points where the function needs to
be evaluated which will give an exact representation of the
integral.
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5. Numerical integration using
Gaussian Quadrature

The Gauss formula is

1

| = j f(x)dx = iwi f(x) (5.1)

-1

The integral is evaluated by calculating the function at discrete
points x; and multiplying it by an appropriate weight W..
For an n integration point rule then the accuracy order is 2n-1.

For example, 1 integation point will integrate a first order
polynomial exactly:

“'U:'
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5. Numerical integration using
Gaussian Quadrature

For example, 2 integation points will integrate a second order
polynomial exactly:

/ n=2
&Qﬁ/T . s,, =+1//3
' I > W, =
s=-1 : s=1 | s=1 Wl W2 L
s :—1,’"\/5 521;’\/5
The Gauss formula in two dimensions is
11 1
| = [ [ f(s,t)dsdt = I{ZWif(si,t)}dt
1_ 1L i=1
11 1 (5.2)

ZZWW f(si’tj)

(e

j=l
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5.1. Example for CST element

For the CST element the displacement function is linear,
resulting in constant strain and stress fields over the element.

To find the integral of a constant, i.e., the area under the curve,
it is only necessary to evaluate the function at one point.

For a CST element, this point is located at the center of the
triangle.

In the natural coordinate system, this point is located at
$,=5,=5,=0.333 and the corresponding weight is 1.

For example, 3-node versus 6-node triangular elements:

Elementos Finitos Isoparamétricos

T
o
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l 5.2. Example for LST element

For the LST element, B and N have been expressed in terms of
the natural coordinates.

For this element, there are 3 Gauss points with locations and
weights:

groupl s, =s,=0.1666, s, =0.666, W, =0.333
group2 s, =s,=0.1666, s,=0.666, W, =0.333
group3 s, =s, =0.1666, s,=0.666, W, =0.333

This gives a degree of precision of 2 (integrates a second order
polynomial exactly).

Elementos Finitos Isoparamétricos



)

Elementos Finitos Isoparamétricos

5. Numerical integration using Gaussian Quadrature

5.2. Example for LST element

The stiffness matrix becomes

—t”B DBAA, , =t [[BTDBJdA, =~ W;(BTDB) |

$1—S;

(5.3)

033

2 E(ETDBY),,,, +

BTDB)), ), +1 - (B'DBU), .,

groupl grou 2

where the Jacobian has already been developed when matrix B

was created.
The integral for the force vector is derived in the same way.

Note: the factor of %2 comes from the
area of the triangle in the s,;-s, space
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6. 4-node quadrilateral element

Step 1 — Select element type
The natural coordinate system shown in the figure is selected.

At

t=1

>
s=-1 S
!

O O
t=-1

The geometry in terms of the natural coordinate system is
X=a, +a,5+a,t+a,st
y=Db, +b,s+bit+b,st

i
—

(6.1)
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6. 4-node quadrilateral element

or in terms of the shape functions and the nodal coordinates as

X =N;X + N,X, + N;X; + N, X,

6.2
y:N1y1+N2y2+N3y3+N4y4 ( )
which can be written in matrix form as
A — —(Nl\
1 1 1 1 1
N2
IXp=X X, X x44N> (6.3)
Y Y Y2 Vs Vel N3

IS
o
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The shape functions are
N, = (0-s)L-1)
szia+9a_o
N, = Z(1+ S)(1+t)

N4:%@—9@+0

Elementos Finitos Isoparamétricos

The sum of the shape functions anywhere on the element is 1.
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N, 0 N, O} Ya | 65)

N, 0 N, o
g S D N, 0 N, 0 N, ‘
| { |0 N, 0 N, 3
3 . :
é Y4
=
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Step 2 — Select the displacement function

The element displacement can be written as a function of the
nodal DOF in the same form as used to describe the geometry.

U,
g Vi
u,
: ux,y)] [N, 0 N, 0 N, 0 N, 07]v, &
E {V(X’ y)} B |: 0 Nl 0 N2 0 N3 O N4:|< u3 (66)
s .
Vs )

or
¥ =Nu (6.7)
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6. 4-node quadrilateral element

Step 3 — Define strain/displacement, stress/strain relations
In 2D the strain/displacement relations are

ou ov ou

x:& ) gy:@ J 7/xy:5+&

or in matrix form

& (6.8)

u
g o

R[> o
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or

fu1j
0 B 7 V
g g 0 ul
2 (¢ | | ox 2
5 OoIN, O N, O N; O N, O]v,
g 9 gy & — O D < e
P oy 0O N, O N, O N; 0 N,jlu,
£ Yw) | o o '
= - 3
o .
5
E \V4J
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and

ON,

oN,
OX
0

oN,

0
oN,

oy
oN,

oN,
OX
0

ON,

0
N,

oy
oN,

oN,
OX
0

oN,

0

oN,
oy

Elementos Finitos Isoparamétricos

That is

oy

OX

¢=Bu

oy

OX

oy
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6. 4-node quadrilateral element

In 2D the stress/strain relations are
o =De=DBuU

where D depends on whether plane stress or plain strain exist.

But N, are functions of s and ¢, not x and y, so, applying the

chain rule we have
ON. 6N 0S 6N ot

OX 0S ax ot OX

ON, _ N, s _oN, (6.11)
| . oy s oy ot oy
or in matrix form
(ON;] [0s ot ][oN;)
ox | _|ox oxl|l as
JoN [T| s ot |, | (612
& ay p, _ay 8y_ N at J
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The derivatives
oS ot 0s ot

OX OX 0y oy
are dificult to evaluate but the derivatives

OX oy oOx oy
0s' 0s ot ot

are not.
Then, it is possible to write

oN, 1 6Ni8y_0Ni8yj
ox I\ os ot ot os

oN; _ 1(_oN;ox oN, 8x)

Elementos Finitos Isoparamétricos

(6.13)

oy I\ as ot ot os
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6. 4-node quadrilateral element

where the determinant of the jacobian, |J|, is

J| = det

ox
0S
oy

s

o
ot
oy

ot

_OXoy oOxoy

05 ot

ot 0s

(6.14)

Now we get a new B which is equal to B but is a function of s

and t.
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6. 4-node quadrilateral element

Step 4 — Derive element stiffness matrix and equations

Lastly, using the principle of minimum potential
energy/principal of virtual work (PMPE) to obtain the stiffness
matrix in the form

tjAjBTDBudA—P—J‘JJNTXbodde—J;JNTTtractdS 0 (6.15)

The Gaussian Quadrature is used to perform the integration
over the element.

The intgrals in the x-y plane are transformed to integrals in the
s-t plane from -1 to +1 and the Gaussian Quadrature is used

j X )dxdy = j j }J|dsditt = 4Zw(BTDB)\J\ (6.16)

-1-1
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