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1. Definition

The same function that is used to define the element geometry 
is used to define the displacements within the element.

– 2-node truss element

– 3-node beam element

linear geometry

quadratic geometry quadratic displacements

linear displacements
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1. Definition

The same local coordinate system is assigned to each element.

This coordinate system is called the natural coordinate system.

The advantages of choosing this coordinate system are:
– It is easier to define the shape functions

– The integration over the surface of the element is easier (numerical 
integration can be used which is much simpler in the natural coordinate 
systems and can be scaled to the actual area)

The steps in deriving the elemental stiffness matrices are the same:

– Step 1: Select element type

– Step 2: Select displacement function

– Step 3: Define strain/displacement, stress/strain relations

– Step 4: Derive element stiffness matrix and equations
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2. 1D Truss Elements

Step 1 – Select element type

For 1D linear truss elements the natural coordinate system for 
an element is:

The natural coordinates are related to the global coordinates 
through

which can be solved for the a’s to give
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2. 1D Truss Elements

or in matrix form as

where

Now, following the remainder of the steps becomes much 
simpler.

Step 2 – Select the displacement function
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2. 1D Truss Elements

Step 3 – Define strain/displacement, stress/strain relations

Recall the following definition

Then, by applying the chain rule of differentiation, we have

Thus
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2. 1D Truss Elements

The stress/strain relation is expressed as

where D=E.

Then,

Step 4 – Derive the element stiffness matrix and equations

The stiffness matrix is

which has an integral over x which needs to be converted to an 
integral over s.

xDε=x (2.9)

Buσx E= (2.10)
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2. 1D Truss Elements

This is done through the transformation

where |J| is the Jacobian and for the simple truss element it is

Finally, substituting B, |J| and the transformation in (2.12) into 
(2.11) gives

or 
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3. CST Elements

Step 1 – Select element type

For constant strain triangular (CST) elements a natural 
coordinate system as shown in the figure is selected.

0.5
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3. CST Elements

The geometry is defined in terms of the natural coordinate 
system as

which in matrix form becomes

and which can be solved as
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3. CST Elements

In this case, these s’s are the shape functions
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3. CST Elements

The sum of the shape functions anywhere on the element is 1.

Note that in this case, the N’s are simply s1, s2 and s3.

Step 2 – Select the displacement function

The element displacement can be written as a function of the 
nodal DOF in the same form as used for the geometry.

1=++ mji NNN (3.5)
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3. CST Elements

Thus

or
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3. CST Elements

Step 3 – Define strain/displacement, stress/strain relations

In 2D the strain/displacement relations are

or in matrix form
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3. CST Elements

and

or

In 2D the stress/strain relations are

where D depends on whether plane stress or plain strain exist.
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3. CST Elements

Since the shape functions are functions of the natural 
coordinates si and not x and y, the chain rule is applied

Let us consider the following
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3. CST Elements

Then, for the derivatives of the shape functions with respect to 
the global coordinate system

and the strains are written as
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3. CST Elements

Step 4 – Derive element stiffness matrix and equations

Lastly, using the principle of minimum potential 
energy/principal of virtual work (PMPE) to obtain the stiffness 
matrix in the form

Since all the terms in B are constant and assuming the 
thickness t and material properties are constant over the 
element one has

where
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4. LST Elements

Step 1 – Select element type

For linear strain triangular (LST) elements a natural coordinate 
system as shown in the figure is selected similar to the CST 
element.
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4. LST Elements

The geometry is defined in terms of the natural coordinate 
system as

These equations can be solved for the shape functions in terms 
of the natural coordinates.

Let Ni be a quadratic function of s1 and s2 of the form

which means that there are 6 unknown coefficients to be 
determined for each shape function.

Note that it is possible to express s3 as a function of s1 and s2 as
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4. LST Elements

Using the information that at node i we need Ni=1 and all other 
Nj≠i=0, then there are 6 equations for each shape function and 
we can solve for the coefficients.

Then
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4. LST Elements

Noting that                       , then (4.3) becomes

In this case the shape/interpolation functions look like
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4. LST Elements

The sum of the shape functions anywhere on the element is 1.

Incidentally, the shape functions in the global coordinate 
system for a nice element with sides aligned with the x and y
axes would look something like this

This is why the isoparametric formulation is used.
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4. LST Elements

Step 2 – Select the displacement function

The element displacement can be written as a function of the 
nodal DOF in the same form as used to describe the geometry.

or
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4. LST Elements

Step 3 – Define strain/displacement, stress/strain relations

In 2D the strain/displacement relations are

or in matrix form
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4. LST Elements

In 2D the stress/strain relations are

where D depends on whether plane stress or plain strain exist.

Let us consider the following matrix

DBuDεσ == (4.10)
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4. LST Elements

Let the Jacobian matrix be (a 2x2 matrix)

Then, the terms in the Bmatrix are extracted from the product
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4. LST Elements

Step 4 – Derive element stiffness matrix and equations

Lastly, using the principle of minimum potential 
energy/principal of virtual work (PMPE) to obtain the stiffness 
matrix in the form

The Gaussian Quadrature is used to perform the integration 
over the element.

Note that B and N in the above are functions of the natural 
coordinates s1 and s2.

0=−−− 
S

tract

V

body

V

dSTdVdV TTT
NXNPDBuB (4.14)
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5. Numerical integration using 
Gaussian Quadrature

As seen before, the derivation of the stiffness matrix requires an 
integration over the element from the strain energy definition 
and so does the force vector.

Often this is difficult to do explicitly. Some numerical 
integration techniques can help here.

In the element formulation, the form of the displacement 
function has been chosen and hence the form of the strains and 
stresses which appear in the internal strain energy.

The principle behind the Gaussian Quadrature is that if the 
functional form of the function to be integrated is known, then 
there is a certain number of points where the function needs to 
be evaluated which will give an exact representation of the 
integral.
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5. Numerical integration using 
Gaussian Quadrature

The Gauss formula is

The integral is evaluated by calculating the function at discrete 
points xi and multiplying it by an appropriate weight Wi.

For an n integration point rule then the accuracy order is 2n-1.

For example, 1 integation point will integrate a first order 
polynomial exactly:
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5. Numerical integration using 
Gaussian Quadrature

For example, 2 integation points will integrate a second order 
polynomial exactly:

The Gauss formula in two dimensions is
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5. Numerical integration using Gaussian Quadrature

5.1. Example for CST element

For the CST element the displacement function is linear, 
resulting in constant strain and stress fields over the element.

To find the integral of a constant, i.e., the area under the curve, 
it is only necessary to evaluate the function at one point.

For a CST element, this point is located at the center of the 
triangle.

In the natural coordinate system, this point is located at 
s1=s2=s3=0.333 and the corresponding weight is 1.

For example, 3-node versus 6-node triangular elements:
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5. Numerical integration using Gaussian Quadrature

5.2. Example for LST element

For the LST element, B and N have been expressed in terms of 
the natural coordinates.

For this element, there are 3 Gauss points with locations and 
weights:

This gives a degree of precision of 2 (integrates a second order 
polynomial exactly).
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5. Numerical integration using Gaussian Quadrature

5.2. Example for LST element

The stiffness matrix becomes

where the Jacobian has already been developed when matrix B
was created.

The integral for the force vector is derived in the same way.
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Note: the factor of ½ comes from the 

area of the triangle in the s1-s2 space
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6. 4-node quadrilateral element

Step 1 – Select element type

The natural coordinate system shown in the figure is selected.

The geometry in terms of the natural coordinate system is

stbtbsbby

statasaax

4321

4321

+++=

+++=
(6.1)
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6. 4-node quadrilateral element

or in terms of the shape functions and the nodal coordinates as

which can be written in matrix form as

44332211
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(6.2)
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6. 4-node quadrilateral element

The shape functions are

The sum of the shape functions anywhere on the element is 1.
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6. 4-node quadrilateral element

Thus
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6. 4-node quadrilateral element

Step 2 – Select the displacement function

The element displacement can be written as a function of the 
nodal DOF in the same form as used to describe the geometry.

or

NuΨ = (6.7)
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6. 4-node quadrilateral element

Step 3 – Define strain/displacement, stress/strain relations

In 2D the strain/displacement relations are

or in matrix form
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6. 4-node quadrilateral element

or
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6. 4-node quadrilateral element

and

That is
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6. 4-node quadrilateral element

In 2D the stress/strain relations are

where D depends on whether plane stress or plain strain exist.

But Ni are functions of s and t, not x and y, so, applying the 
chain rule we have

or in matrix form
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6. 4-node quadrilateral element

The derivatives

are dificult to evaluate but the derivatives

are not.

Then, it is possible to write
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6. 4-node quadrilateral element

where the determinant of the jacobian, |J|, is

Now we get a new B which is equal to B but is a function of s
and t.
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6. 4-node quadrilateral element

Step 4 – Derive element stiffness matrix and equations

Lastly, using the principle of minimum potential 
energy/principal of virtual work (PMPE) to obtain the stiffness 
matrix in the form

The Gaussian Quadrature is used to perform the integration 
over the element.

The intgrals in the x-y plane are transformed to integrals in the 
s-t plane from -1 to +1 and the Gaussian Quadrature is used
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