

MECÂNICA ESTRUTURAL - 10371/10391/10411

2015/2016

Assignment 1

OBJECTIVES

To learn how to implement a computer code to solve a structural problem, using the finite element method.

1. PROBLEM

A two-dimensional truss is to be sized for minimum weight using the finite element method. In the finite element formulation of the bar assume that the cross-section properties are constant within an element. Determine the diameter, D_i , and thickness, t_i , of each ith bar for minimum weight subject to a maximum deflection at any joint of 0.1 mm, a safety factor of FS = 1.5, a minimum safety margin of MS = 0.0 and avoiding any buckling occurrence in any of the bars.

Summarize the results of cross-section diameter, D, thickness, t, horizontal deflection, u, vertical, deflection, v, total deflection, δ , maximum stress, σ , and safety margin, MS, in a table for all bars. Comment the results.

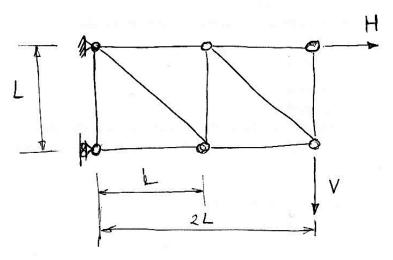


Figure 1: Loaded truss.

2. DATA

Each group should select a different combination of material, loading and cross-section from the options below.

Table 1: Material properties

material		density ρ , kg/m3	Young's modulus E, GPa	tensile strength σ_{tu} , MPa	compressive strength σ_{cu} , MPa
1	steel	7800	210	800	640
2	aluminium alloy	2700	70	600	480
3	pultruded carbon	1600	140	1500	1200

Table 2: Load cases

	reference length	horizontal force	vertical force	
	<i>L</i> , m	H, N	V, N	
i	1	2000	1000	
ii	1	1000	2000	

Table 3: Cross-section shapes.

	cross-section	dimensions
A	t h	D = b = h = ? $t = ?$
В	Jt Th	D = b = h = ? $t = ?$
С	t In	D = b = h = ? $t = ?$

Pedro V. Gamboa (2015)

Table 4: Problem combinations and students names.

Mat.	Load	Csec.	Name 1	Name 2
1	i	A		
1	i	В		
1	i	C		
1	ii	A		
1	ii	В		
1	ii	С		
2	i	A		
2	i	В		
2	i	C		
2	ii	A		
2	ii	В		
2	ii	C		
3	i	A		
3	i	В		
3	i	C		
3	ii	A		
3	ii	В		
3	ii	C		

Pedro V. Gamboa (2015)