

MECÂNICA ESTRUTURAL - 10371/10391/10411

2014/2015

Assignment 1

OBJECTIVES

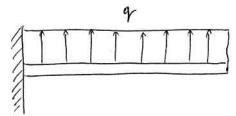
To learn how to implement a computer code to solve a structural problem, using the finite element method.

1. PROBLEM

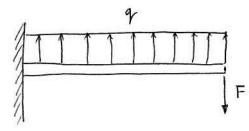
A wing spar of an ultralight aircraft is to be sized for minimum weight using the finite element method. In the finite element formulation of the Euler-Bernoulli beam, assume that the cross-section properties are constant within the element. Determine the width, b, and thickness, t = t0+t1*x, of the wing's cross-section for minimum weight subject to a maximum tip deflection of 10% of the semi-span, L; a safety factor of FS = 1.5 and a minimum safety margin in any position along the spar of MS = 0.2. Assume that $b \le h$.

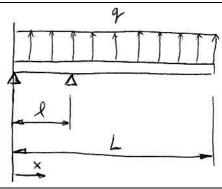
Plot the transverse deflection, w, the rotation, θ , the thickness, t, the maximum stress, σ , and the safety margin, MS, as functions of the position, x, along the spar.

2. DATA


Each group should select a different combination of loading, cross-section and material from the options below.

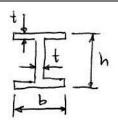
	Material	
i	Young's modulus	E = 70 GPa
	Ultimate direct stress	σmax =600MPa
ii	Young's modulus	E = 100 GPa
	Ultimate direct stress	σ max = 1000 MPa




$$\begin{array}{c} L=5\ m\\ q=1800\ N/m \end{array}$$

2

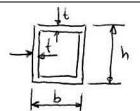
$$\begin{array}{c} L=5~m\\ q=1800~N/m\\ F=250~N \end{array}$$


3

$$\begin{split} L = 5vm \\ l = 2 \ m \\ q = 1800 \ N/m \end{split}$$

Cross-section

A



$$h = 0.1 \text{ m}$$

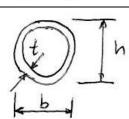
 $b = ?$

$$t = t0 + t1 * x$$

$$t0 = ?$$

 $t1 = ?$

В


$$h = 0.1 \text{ m}$$

 $b = ?$

$$t = t0 + t1 * x$$

$$t0 = ?$$

$$t1 = ?$$

C

$$h = 0.1m$$

$$b = ?$$

$$t = t0 + t1 * x$$

$$t0 = ?$$

$$t1 = ?$$