

Estruturas Aeroespaciais I – 10362/15089

2024/2025

Mini Project Sizing of a light aircraft tail boom

1. OBJECTIVE

To size the structure of a fuselage tail boom subject to strength and stiffness constraints. To write a technical report.

2. DESCRIPTION

It is required to size the fuselage tail boom of a light sport aircraft which has a maximum take-off mass of m = 650 kg and limit load factors of n = +4/-2.

A simplified representation of the tail boom's geometry and the definition of the tail boom parameters are shown in Figure 1. The tail boom has a height h(z), and a width w(z).

The tail boom structure is made of a closed thin-walled single section. The upper tail boom skin has thickness t_1 and the lower tail boom skin has thickness t_2 . The cross-section areas of the upper and lower longerons are A_1 and A_2 , respectively. The root of the tail boom is assumed to be built-in at the mid fuselage (not shown) and the tip is free. One of three different materials can be used in the design of the tail boom, the aluminium alloys 7075-T6, 2024-T3 or 6061-T6, all being isotropic materials with properties given in Table 1. The available material thicknesses are given in Table 2.

Two distinct load cases must be used to size the tail boom: a) A first load case to apply to the tail boom results from flight conditions and includes a vertical force, S_y , corresponding to the horizontal tail's balance load and a horizontal force, $S_x = S_y/2$. This load system is applied at the free end of the tail boom at the vertical symmetry axis at a position $y_V = 0.8$ m. b) A second load case results from levelled (3-point) landing conditions and includes a vertical force, S_y , resulting from a ground load factor $n_g = 4$. The combined mass of the horizontal and vertical tails is $m_T = 15$ kg.

The maximum lift coefficient of the wing is $C_{Lmax} = 1.66$, the minimum negative lift coefficient is $C_{Lmin} = -C_{Lmax}/2$, the lift coefficient is given by $C_L = 0.011\pi^2b(\alpha+4)/(b+2c)$, where α is the angle of attack, the pitching moment coefficient of the wing is $C_M = -0.12$ and the design diving speed is $V_D = 135$ m/s.

The centre of gravity of the aircraft is coincident with the aerodynamic centre of the wing, which is located at $z_W = -0.5$ m, and the centre of gravity of the tail is coincident with the aerodynamic centres of the horizontal and vertical tails, which are located at the tip (free end) of the tail boom.

Tasks:

- a) Determine the manoeuvre *V-n* diagram using the certification requirements CS-LSA or CS-VLA.
- b) Implement a calculation methodology that enables the direct stresses and the shear stresses acting on the skin and longerons of the tail boom root (built-in end) section of Figure 1 to be computed for the load cases provided and for arbitrary values of t_1 , t_2 , A_1 , and A_2 . In this methodology the longerons can be idealized but the skin cannot; and you may neglect the effects of the tail boom taper.
- c) Determine the values of t_1 , t_2 , A_1 e A_2 which minimize the structure mass, considering the applied stresses at the root section, the data of Tables 1, 2, and 3 and guaranteeing that the maximum tip rotation, θ_x , is less than 1° and that the maximum tip twist angle, θ_z , is less than 2°.
- d) Analise and comment the results.
- e) Write up a technical report.

3. REPORT

Each team of 3 students (each team uses a different value of i from Table 3) must present the methodology and the results of its analysis in a technical written report of **no more than 15 pages**. In the report, adequate detail must be provided concerning the solution steps and the final results, explicitly mentioning the values of t_1 , t_2 , A_1 e A_2 , the free end rotation, the free end twist, and the stress field over the tail boom built-in end section. A critical analysis of the results with proposals for improving the structural efficiency must be provided.

The report must follow the following structure:

- a) Introduction: presentation of the problem, objectives, and geometry. [10 points]
- b) Load Calculation: presentation of the mathematical model to calculate the V-n manoeuvre diagram and the trim loads on the tail, description of the selection of critical design loads, description of the implementation of the numerical model, and presentation of the results. [45 points]
- c) Structural Analysis: presentation of the mathematical model to calculate stresses and displacements of the structure, description of the implementation of the numerical model, and presentation of the results. [45 points]
- d) Structural Optimization: presentation of the mathematical model to minimize the structure's mass while meeting strength and stiffness constraints, description of the implementation of the numerical model, and presentation of the results. [45 points]
- e) Analysis and Discussion: evaluation of the results and presentation of concrete corrections/improvements to be applied to the structure. [45 points]
- f) Conclusions: considering the objectives, overall assessment of the work and of the obtained results. [10 points]

The final hand-in date of the report is <u>December 20th, 2024</u>. The report must be sent in <u>pdf format</u> to the e-mail address <u>pgamboa@ubi.pt</u>.

Pedro V. Gamboa (2024)

4. DATA

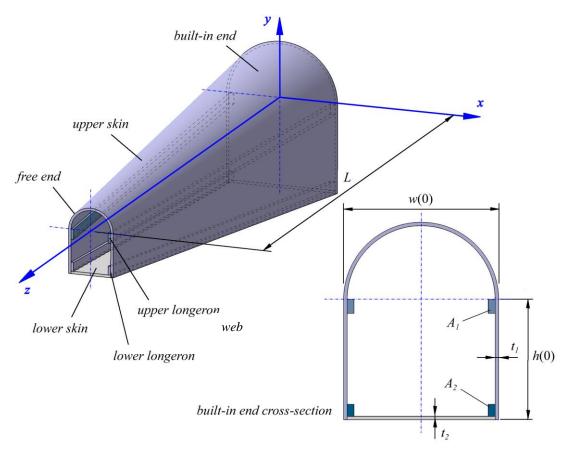


Figure 1 – Fuselage tail boom geometry and parameters.

Table 1 – Material properties

Table 1 Material Properties						
Property	parameter	unit	7075-T6	2024-T3	6061-T6	
Density	ρ	kg/m³	2810	2780	2700	
Longitudinal elastic modulus	Ë	GPa	71.7	73.1	68.9	
Poisson ratio	ν	-	0,33	0,33	0,33	
Tensile yield stress	$\sigma_{\!\scriptscriptstyle yt}$	MPa	469	345	276	
Tensile strength	σ_{t}	MPa	538	483	310	
Compression strength	$\sigma_{ m t}$	MPa	514	462	297	
Shear strength	au	MPa	331	283	207	

Table 2 – Available thicknesses (in mm).

0.122; 0.254; 0.417; 0.61; 0.813; 1.02; 1.22; 1.42; 1.63; 1.83; 2.03; 2.34; 2.95; 4.06; 5.38; 6.4; 8.23; 10.16; 12.7

Table 3 – Wing and fuselage tail boom specifications according to team number.

Team	span, m	mean chord, m	<i>h,</i> m	<i>w,</i> m	<i>L,</i> m
<i>i</i> = 1,30	11.5-0.1×(i-1)	0.75+0.01×(<i>i</i> -1)	$0.65 \times (1-0.5z/L)$	$0.85 \times (1-0.6z/L)$	4-0.02×(i-1)

Pedro V. Gamboa (2024)

Table 4 – Teams.

Team	Student 1	Student 2	Student 3
1	Ricardo Fonte - 31505	David Ponciano - 32959	Gilberto Correia - 40156
2	Bernardo Piteira - 49399	Carolina Gomes - 49561	Maria Rebelo - 50345
3	David Simões - 49384	Luís Calmeiro - 49636	Orlando Fortunato - 49672
4	Beatriz Santos - 49536	Beatriz Massano - 49796	Joana Quelhas - 50177
5	Salvador Vale - 49524	David Andrade - 49560	Rafael Ferreira - 49855
6	Leonardo Ferreira - 49538	José Barros - 49616	Miguel Robalo - 49646
7	Vasco Castro - 49551	Rodrigo Matos - 50053	João Rodrigues - 50061
8	Nuno Riscado - 49681	João Branco - 49935	Manuel Baptista - 50666
9	Rafael Andrade - 50298	Rodrigo Condeço - 50498	Tiago Sequeira - 50873
10	Raquel Loureiro - 49406	Margarida Guerreiro - 49588	André Teixeira - 49858
11	José Costa - 48214	Gonçalo Coimbra - 49495	Tomás Saraiva - 50180
12	Manuel Pereira -49535	Jéssica Oliveira- 49721	Gonçalo Tavares- 53063
13	Joana Sousa - 49496	Alex Burdujan - 49989	Nicole Silva - 50022
14	Patrícia Dores - 49521	Maria Inês Pina - 49547	Simão Serra - 49553
15	Afonso Salvador - 49818	André Azevedo - 50930	Daniel Santo - 50949
16	Samuel Macedo - 49552	José Prata - 49563	José Bizarro - 49904
17	Paulo Rosa - 48150	João Silva - 48733	Dmytro Kovalchuk - 50140
18	Luís Gonçalves - 49557	Romeu Daniel - 49895	Diogo Silva - 50337
19	Rui Teixeira - 45442	Daniela Pereira - 49428	Cláudio Antunes - 53015
20	Gustavo Domingues - 49620	Rúben Marçal - 50508	Lucía Carrillo Soriano - 54863
21	Pedro Simões - 49781	Bruno Bernardino - 50257	Christian Delgado - 48824
22	Neusa Panzo - 43082	Kissange Muthemba - 46713	Weila Fernandes - 44995
23	Admir Marques - 43871		
24			
25			

Pedro V. Gamboa (2024)