

Estruturas Aeroespaciais I – 10362

2021/2022

Mini Project Sizing of a wingbox

1. OBJECTIVE

To size the structure of a wingbox subject to strength and stiffness constraints. To write a technical report.

2. DESCRIPTION

It is required to size the wingbox of an ultralight aircraft which has a maximum take-off mass of m = 450 kg and limit load factors of n = +4/-2.

A simplified representation of the wing's geometry and the definition of the wingbox parameters are shown in Figure 1. The wingbox has a constant width 0.3c, a constant height h, and a span b.

The wingbox structure is made of a closed thin-walled single section. The wingbox skin has thickness t_c and the spar web has thickness t_a . The cross-section areas of the upper and lower spar flanges are A_l and A_2 , respectively. The root of the wing is assumed to be built-in at the main spar and the tip is free. One of two different materials can be used in the design of the wingbox, the aluminium alloys 6061-T6 or 2024-T3, both being isotropic materials with properties given in Table 1. The available thicknesses are given in Table 2.

A first load case to apply to the wing includes a uniformly distributed vertical load, w_L , along the span corresponding to the wing lift and a uniformly distributed torsion moment, w_T , along the span. This load system is applied a distance 0.05c in front of the wing spar at the horizontal symmetry axis. A second load case has an upward point force acting on the spar at a distance 1.5 m from the wing root. This force represents the ground reaction at the main wheel in a landing condition with a ground load factor $n_g = 3.5$.

The maximum lift coefficient of the wing is $C_{Lmax} = 1.66$, the minimum negative lift coefficient is $C_{Lmin} = -C_{Lmax}/2$, the lift coefficient is given by $C_L = 0.011 \pi^2 b(\alpha + 4)/(b + 2c)$, where α is the angle of attack, the pitching moment coefficient of the wing is $C_M = -0.1$ and the design diving speed is $V_D = 86$ m/s.

Tasks:

- a) Determine the manoeuvre *V-n* diagram using the certification requirements CS-VLA.
- b) Implement a calculation methodology that enables the direct stresses and the shear stresses acting on the skin and spar of the section of Figure 1 to be computed, for the

- load cases provided and for arbitrary values of t_c , t_a , A_1 , and A_2 . In this methodology the spar flanges can be idealized but not the skin.
- c) Determine the values of t_c , t_a , A_1 e A_2 which minimize the structure mass considering the applied stresses at the root section, the data of Tables 1, 2, and 3 and guaranteeing that the maximum tip deflection is less than 0.1b and that the maximum tip twist angle is less than 2° .
- d) Design the connection between the wing spar and the fuselage considering the loads at the wing root.
- e) Analise and comment the results.
- f) Write up a technical report.

3. REPORT

Each team of 3 students (each team uses a different value of i from Table 3) must present the methodology and the results of its analysis in a technical written report of **no more than 12 pages**. In the report, adequate detail must be provided concerning the solution steps and the final results, explicitly mentioning the values of t_c , t_a , $A_1 \, e \, A_2$, the tip deflection, the tip twist, and the stress field over the wing. A critical analysis of the results with proposals for improving the structural efficiency must be provided.

The final hand-in date of the report is <u>7 January</u>, <u>2022</u>. The report must be sent in <u>pdf format</u> to the e-mail address <u>pgamboa@ubi.pt</u>.

4. DATA

Figure 1 – Wing geometry and parameters.

Pedro V. Gamboa (2021)

Table 1 – Material properties

Property	parameter	unit	6061-T6	2024-T3
Density	ρ	kg/m³	2700	2780
Longitudinal elastic modulus	E	GPa	68,9	73,1
Poisson ratio	ν	-	0,33	0,33
Tensile yeald stress	$\sigma_{\!\scriptscriptstyle yt}$	MPa	276	345
Tensile strength	σ_{t}	MPa	310	483
Compression strength	σ_{t}	MPa	297	462
Shear strength	au	MPa	207	283

Table 2 – Available thicknesses (in mm).

0.122; 0.254; 0.417; 0.61; 0.813; 1.02; 1.22; 1.42; 1.63; 1.83; 2.03; 2.34; 2.95; 4.06; 5.38; 6.4; 8.23; 10.16; 12.7

Table 3 – Wing specifications according to team number.

-	Геат	<i>b,</i> m	<i>c,</i> m	<i>h,</i> m
i	= 1,30	11.5-0.01×(i-1)	0.75+0.01×(i-1)	0.15 <i>c</i>

Table 4 – Teams.

Team	Student 1	Student 2 Student 3	
1	Matilde Figueiredo - 43330	Egor Ukolov - 43882	
2	João Barateiro - 43726	João Charuto - 44204	Nuno Souza - 44515
3	Diego Côrte-Real - 43300	Tomás Figueiredo - 43825	Dany Cardoso - 44605
4	Erika Marques - 43418	Rafael Fernandes - 43421	Francisco Costa - 43465
5	Maria Leonor Patricio -43615	Manuel Azevedo - 44357	Liane Moura - 44473
6	António Pelouro - 45397	Marta Dias - 47088	
7	Vasco Gabriel - 45392	Miguel Sousa - 45402	
8	Rodrigo Silva - 43590	Catarina Oliveira - 43988	Ema Marques - 44070
9	Inês de Medeiros - 44598	Miguel Marques - 44671	
10	Colinet Contreiras - 38883	Edson Varela - 42247	
11	Manuel Matos - 43654	Leonardo Ferreira - 43744	Rafael Rodrigues - 44152
12	Simão Pereira - 43604	Salvador Fernandes - 43748	Diogo Lopes - 44463
13	André Viana - 38593	Diogo Silva - 44099	Hugo Gonçalves - 44198
14	Tiago Nave - 43809	Petro Petrovych - 44040	
15	Francisco Ramos - 43356	António Vilaça - 43693	Rafael Simões - 44069
16	Francisca Serras - 43386	Joana Limpo - 44021	Daniel Pinto - 44963
17	Pedro Cardoso - 43474	Simão Ribeiro - 43823	João Campos - 43854
18	Rimaldini Tavares - 44505	Gilson Lopes - 44636	Jefferson Cardoso - 44655
19	António Duarte - 41977	Bruno Eusébio - 44315	Gonçalo Almeida - 44317
20			
21			
22			
23			
24			
25			-
26			-
27			-
28			
29			

Pedro V. Gamboa (2021)